Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introducing Machine Learning for the Elastic Stack
Search
Kosho Owa
May 19, 2017
Technology
2
12k
Introducing Machine Learning for the Elastic Stack
Elastic Machine Learning Seminar held on May 19th, 2017
Kosho Owa
May 19, 2017
Tweet
Share
More Decks by Kosho Owa
See All by Kosho Owa
Elastic Stack X-Pack 5.0 for IT Security Workshop
kosho
1
330
Elastic Stack X-Pack 5.0 for IT Ops Workshop
kosho
0
340
[Developers Summit 2017] Anomaly Detection with the Elastic Stack
kosho
1
720
Anomaly Detection with the Elastic Stack
kosho
1
1.8k
Getting Started with Elastic Cloud and Beats for Log Analytics
kosho
0
120
Elastic{ON} Seminar Tokyo 2016 Product Update
kosho
0
170
Introducing Elastic Cloud
kosho
0
78
Gearing Up for Elastic Stack, X-Pack 5.0 Releases
kosho
0
150
Elastic Stack Hands-on Workshop (EN)
kosho
1
160
Other Decks in Technology
See All in Technology
困ったCSVファイルの話
mottyzzz
0
190
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
610
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
6.4k
AIと融ける人間の冒険
pujisi
0
120
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
「違う現場で格闘する二人」——社内コミュニティがつないだトヨタ流アジャイルの実践とその先
shinichitakeuchi
0
320
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
430
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
320
RALGO : AIを組織に組み込む方法 -アルゴリズム中心組織設計- #RSGT2026 / RALGO: How to Integrate AI into an Organization – Algorithm-Centric Organizational Design
kyonmm
PRO
3
1.1k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
350
Featured
See All Featured
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
46
Raft: Consensus for Rubyists
vanstee
141
7.3k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
140
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
The Invisible Side of Design
smashingmag
302
51k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
[SF Ruby Conf 2025] Rails X
palkan
0
710
KATA
mclloyd
PRO
33
15k
The Spectacular Lies of Maps
axbom
PRO
1
430
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
120
Game over? The fight for quality and originality in the time of robots
wayneb77
1
78
Transcript
Machine Learning for the Elastic Stack Beta in 5.4.
GA coming soon May 2017 େྠ ߂ৄ | Kosho Owa Solutions Architect, Elastic
2 Elastic Stack 100% Φʔϓϯιʔε ʮΤϯλʔϓϥΠζ൛ʯແ͠ όʔδϣϯ 5.0Ͱશ౷Ұ
3 X-Pack ؆୯ʹΠϯετʔϧ Elastic StackΛ֦ு αϒεΫϦϓγϣϯʹؚ·ΕΔ Security Alerting Monitoring Reporting
Graph Machine Learning
4 Elastic Cloud Elasticsearch, Kibanaͷ ϚωʔδυαʔϏε X-Packͷػೳར༻Մೳ Available in AWS
today
5 Elastic Cloud Enterprise ෳͷElastic StackڥΛࣗࡏʹ࡞ Logging as a serviceΛࣗ৫ʹల։
Public beta; Expected GA Q1 2017
ҟৗͷൃݟ͕τϥϒϧͷஹީΛࣔ͢ 6 Spiked 404 errors Web attack IT Operational Analytics
Security Analytics Business Analytics Unusual DNS activity Data exfiltration Rare log messages Failing sensor
Operational Analytics • ΣϒαΠτͷΞΫηετϥϑΟοΫʹҟৗແ͍͔? • Ϙοτ߈ܸऀ͕๚Ε͍ͯͳ͍͔? • σʔλϕʔε͕ग़ྗ͍ͯ͠ΔErrorϩάରॲ͢Δඞཁ͕ ͋Δͷ͔? Use
Case
Security Analytics • ϚϧΣΞʹ৵ೖ͞Ε͍ͯͳ͍͔? • ෦ऀʹΑΔηΩϡϦςΟڴҖແ͍͔? • DNSͷϩάʹɺσʔλऔͷ͕ࠟͳ͍͔? Use Case
Telemetry / Sensors ▪ ISPͷωοτϫʔΫҰ࣌ःஅʹΑΔϨΠςϯγʔͷٸ ܹͳ૿Ճ? ▪ ଞͱҟͳΔӡసύλʔϯΛͱΔυϥΠόʔ? ▪ ಛҟͳΠϕϯτλΠϓηϯαʔͷނোΛ͔ࣔ͢?
Use Case
10 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • σʔλෳࡶɺߴ࣍ݩɺߴʹมԽ • ਓؒͷࢹೝݱ࣮తʹෆՄೳ • ༰қʹݟಀ͢ Visual inspection
is not practical Where’s the anomaly?
11 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • ੩తͳᮢʹΑΔʮਖ਼ৗʯͷఆٛࠔ • ϧʔϧσʔλΠϯϑϥͷมߋʹैͰ͖ͳ͍ • ༰қʹᷖճ͞Εͯ͠·͏ Rule-based alerts
are insufficient What’s the right threshold ?
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 12 • ʮڭࢣͳ͠ʯػցֶशςΫχοΫʹΑΓ ▪ աڈͷσʔλ͔Βʮਖ਼ৗʯΛֶͼϞσϧΛ࡞Δ ▪ ਖ਼ৗͷൣғ͔Βҳͨ͠ࡍʹҟৗͱͯ͠ݕ
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 13 • ڭࢣͳ͠ - खಈͰͷਖ਼ৗͷೖྗ͕ෆཁ • σʔλͷมԽʹै - ೖ͞ΕΔσʔλʹΑΓܧଓతʹϞσϧΛߋ৽
• ӨڹҼࢠಛఆ - ࠜຊݪҼղੳΛՃ
ҟͳΔछྨͷҟৗΛݕ 14 • ࣌ܥྻͷϝτϦοΫ Time series - single / multiple
• ͙Εऀ Outliers in population (using entity profiling) • ك༗ͳඇߏϝοηʔδ Rare / unusual rates in “categories” of events
࣌ܥྻσʔλͷҟৗ 15 Time Metric • Single (univariate) time series Example:
Is there unusual traffic on website ?
࣌ܥྻσʔλͷҟৗ 16 Time Metric USA UK France Japan • Multiple
time series ▪ ෳͷϝτϦοΫ ▪ FieldʹΑͬͯྨ͞ΕͨϝτϦοΫ • ͦΕͧΕ͕ಠཱͯ͠ଘࡏ͢Δ Example: Is there unusual web activity from any country?
͙Εऀ Outliers in population (using entity profiling) 17 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
͙Εऀ Outliers in population (using entity profiling) 18 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
ك༗ͳඇߏϝοηʔδͷมԽ Unusual or rare events (via log categorization) 19 •
ྨࣅੑʹج͍ͮͯΧςΰϦ͚ • ࣌ؒมԽʹΑΔසΛֶश • ϞσϧͱҟͳΕҟৗͱͯ͠ݕ Example: • Do my application logs contain unusual messages
X-Pack Machine Learning Elastic StackͱͷڧݻͳΠϯςάϨʔγϣϯ 20
• Elasticsearch • Kibana ༰қʹΠϯετʔϧ 21 $ elasticsearch-plugin install x-pack
$ kibana-plugin install x-pack
σϓϩΠϝϯτϞσϧ 22 Cluster Data node Apps Master node Data node
Data node Master node Master node Data node Data node ES clients, Kibana, Logstash, Beats, User apps and etc. ML node ML node # config/elasticsearch.yml xpack.ml.enabled: true node.ml: true
֎෦γεςϜͱͷଓ • API (anomaly_detectors, datafeeds, results, model_snapshots, validate) • ΠϯσοΫε
(.ml-anomalies-*)
Taking Action with X-Pack Alerting 24
Demo Single/Multiple Metrics: New York City Yellow Taxi Outliers in
Population: Web Server Log Rare Messages: DBMS Server Log 25
26 4JOHMF.FUSJD
27 .VMUJ.FUSJD
28 .VMUJ.FUSJD
29 0VUMJFSTJO1PQVMBUJPO
30 0VUMJFSTJO1PQVMBUJPO
31 3BSF.FTTBHFT
32 3BSF.FTTBHFT
࣍ͷεςοϓ 33 • Elastic StackΛ·ͩར༻͍ͯ͠ͳ͍ • ϋϯζΦϯϫʔΫγϣοϓ • Elastic StackɺX-PackΛΠϯετʔϧ
• αϯϓϧσʔλΛར༻ (ϒϩάࢀর) or ࣗͷσʔλΛೖ • MLδϣϒΛ࡞ • Elastic StackΛར༻த • X-PackΛΠϯετʔϧ (30ؒͷτϥΠΞϧ/ඇϓϩμΫγϣϯڥ) • MLδϣϒΛ࡞ (Ϩγϐ׆༻) • AlertingͰΞΫγϣϯ