$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introducing Machine Learning for the Elastic Stack
Search
Kosho Owa
May 19, 2017
Technology
2
12k
Introducing Machine Learning for the Elastic Stack
Elastic Machine Learning Seminar held on May 19th, 2017
Kosho Owa
May 19, 2017
Tweet
Share
More Decks by Kosho Owa
See All by Kosho Owa
Elastic Stack X-Pack 5.0 for IT Security Workshop
kosho
1
330
Elastic Stack X-Pack 5.0 for IT Ops Workshop
kosho
0
340
[Developers Summit 2017] Anomaly Detection with the Elastic Stack
kosho
1
720
Anomaly Detection with the Elastic Stack
kosho
1
1.8k
Getting Started with Elastic Cloud and Beats for Log Analytics
kosho
0
120
Elastic{ON} Seminar Tokyo 2016 Product Update
kosho
0
170
Introducing Elastic Cloud
kosho
0
77
Gearing Up for Elastic Stack, X-Pack 5.0 Releases
kosho
0
150
Elastic Stack Hands-on Workshop (EN)
kosho
1
160
Other Decks in Technology
See All in Technology
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
580
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
180
ActiveJobUpdates
igaiga
1
310
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
230
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
4
830
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
230
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
140
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
130
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
270
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
430
202512_AIoT.pdf
iotcomjpadmin
0
140
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
7.9k
Bash Introduction
62gerente
615
210k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
Context Engineering - Making Every Token Count
addyosmani
9
550
Design in an AI World
tapps
0
98
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
My Coaching Mixtape
mlcsv
0
13
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Transcript
Machine Learning for the Elastic Stack Beta in 5.4.
GA coming soon May 2017 େྠ ߂ৄ | Kosho Owa Solutions Architect, Elastic
2 Elastic Stack 100% Φʔϓϯιʔε ʮΤϯλʔϓϥΠζ൛ʯແ͠ όʔδϣϯ 5.0Ͱશ౷Ұ
3 X-Pack ؆୯ʹΠϯετʔϧ Elastic StackΛ֦ு αϒεΫϦϓγϣϯʹؚ·ΕΔ Security Alerting Monitoring Reporting
Graph Machine Learning
4 Elastic Cloud Elasticsearch, Kibanaͷ ϚωʔδυαʔϏε X-Packͷػೳར༻Մೳ Available in AWS
today
5 Elastic Cloud Enterprise ෳͷElastic StackڥΛࣗࡏʹ࡞ Logging as a serviceΛࣗ৫ʹల։
Public beta; Expected GA Q1 2017
ҟৗͷൃݟ͕τϥϒϧͷஹީΛࣔ͢ 6 Spiked 404 errors Web attack IT Operational Analytics
Security Analytics Business Analytics Unusual DNS activity Data exfiltration Rare log messages Failing sensor
Operational Analytics • ΣϒαΠτͷΞΫηετϥϑΟοΫʹҟৗແ͍͔? • Ϙοτ߈ܸऀ͕๚Ε͍ͯͳ͍͔? • σʔλϕʔε͕ग़ྗ͍ͯ͠ΔErrorϩάରॲ͢Δඞཁ͕ ͋Δͷ͔? Use
Case
Security Analytics • ϚϧΣΞʹ৵ೖ͞Ε͍ͯͳ͍͔? • ෦ऀʹΑΔηΩϡϦςΟڴҖແ͍͔? • DNSͷϩάʹɺσʔλऔͷ͕ࠟͳ͍͔? Use Case
Telemetry / Sensors ▪ ISPͷωοτϫʔΫҰ࣌ःஅʹΑΔϨΠςϯγʔͷٸ ܹͳ૿Ճ? ▪ ଞͱҟͳΔӡసύλʔϯΛͱΔυϥΠόʔ? ▪ ಛҟͳΠϕϯτλΠϓηϯαʔͷނোΛ͔ࣔ͢?
Use Case
10 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • σʔλෳࡶɺߴ࣍ݩɺߴʹมԽ • ਓؒͷࢹೝݱ࣮తʹෆՄೳ • ༰қʹݟಀ͢ Visual inspection
is not practical Where’s the anomaly?
11 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • ੩తͳᮢʹΑΔʮਖ਼ৗʯͷఆٛࠔ • ϧʔϧσʔλΠϯϑϥͷมߋʹैͰ͖ͳ͍ • ༰қʹᷖճ͞Εͯ͠·͏ Rule-based alerts
are insufficient What’s the right threshold ?
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 12 • ʮڭࢣͳ͠ʯػցֶशςΫχοΫʹΑΓ ▪ աڈͷσʔλ͔Βʮਖ਼ৗʯΛֶͼϞσϧΛ࡞Δ ▪ ਖ਼ৗͷൣғ͔Βҳͨ͠ࡍʹҟৗͱͯ͠ݕ
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 13 • ڭࢣͳ͠ - खಈͰͷਖ਼ৗͷೖྗ͕ෆཁ • σʔλͷมԽʹै - ೖ͞ΕΔσʔλʹΑΓܧଓతʹϞσϧΛߋ৽
• ӨڹҼࢠಛఆ - ࠜຊݪҼղੳΛՃ
ҟͳΔछྨͷҟৗΛݕ 14 • ࣌ܥྻͷϝτϦοΫ Time series - single / multiple
• ͙Εऀ Outliers in population (using entity profiling) • ك༗ͳඇߏϝοηʔδ Rare / unusual rates in “categories” of events
࣌ܥྻσʔλͷҟৗ 15 Time Metric • Single (univariate) time series Example:
Is there unusual traffic on website ?
࣌ܥྻσʔλͷҟৗ 16 Time Metric USA UK France Japan • Multiple
time series ▪ ෳͷϝτϦοΫ ▪ FieldʹΑͬͯྨ͞ΕͨϝτϦοΫ • ͦΕͧΕ͕ಠཱͯ͠ଘࡏ͢Δ Example: Is there unusual web activity from any country?
͙Εऀ Outliers in population (using entity profiling) 17 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
͙Εऀ Outliers in population (using entity profiling) 18 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
ك༗ͳඇߏϝοηʔδͷมԽ Unusual or rare events (via log categorization) 19 •
ྨࣅੑʹج͍ͮͯΧςΰϦ͚ • ࣌ؒมԽʹΑΔසΛֶश • ϞσϧͱҟͳΕҟৗͱͯ͠ݕ Example: • Do my application logs contain unusual messages
X-Pack Machine Learning Elastic StackͱͷڧݻͳΠϯςάϨʔγϣϯ 20
• Elasticsearch • Kibana ༰қʹΠϯετʔϧ 21 $ elasticsearch-plugin install x-pack
$ kibana-plugin install x-pack
σϓϩΠϝϯτϞσϧ 22 Cluster Data node Apps Master node Data node
Data node Master node Master node Data node Data node ES clients, Kibana, Logstash, Beats, User apps and etc. ML node ML node # config/elasticsearch.yml xpack.ml.enabled: true node.ml: true
֎෦γεςϜͱͷଓ • API (anomaly_detectors, datafeeds, results, model_snapshots, validate) • ΠϯσοΫε
(.ml-anomalies-*)
Taking Action with X-Pack Alerting 24
Demo Single/Multiple Metrics: New York City Yellow Taxi Outliers in
Population: Web Server Log Rare Messages: DBMS Server Log 25
26 4JOHMF.FUSJD
27 .VMUJ.FUSJD
28 .VMUJ.FUSJD
29 0VUMJFSTJO1PQVMBUJPO
30 0VUMJFSTJO1PQVMBUJPO
31 3BSF.FTTBHFT
32 3BSF.FTTBHFT
࣍ͷεςοϓ 33 • Elastic StackΛ·ͩར༻͍ͯ͠ͳ͍ • ϋϯζΦϯϫʔΫγϣοϓ • Elastic StackɺX-PackΛΠϯετʔϧ
• αϯϓϧσʔλΛར༻ (ϒϩάࢀর) or ࣗͷσʔλΛೖ • MLδϣϒΛ࡞ • Elastic StackΛར༻த • X-PackΛΠϯετʔϧ (30ؒͷτϥΠΞϧ/ඇϓϩμΫγϣϯڥ) • MLδϣϒΛ࡞ (Ϩγϐ׆༻) • AlertingͰΞΫγϣϯ