Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introducing Machine Learning for the Elastic Stack
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Kosho Owa
May 19, 2017
Technology
2
12k
Introducing Machine Learning for the Elastic Stack
Elastic Machine Learning Seminar held on May 19th, 2017
Kosho Owa
May 19, 2017
Tweet
Share
More Decks by Kosho Owa
See All by Kosho Owa
Elastic Stack X-Pack 5.0 for IT Security Workshop
kosho
1
340
Elastic Stack X-Pack 5.0 for IT Ops Workshop
kosho
0
340
[Developers Summit 2017] Anomaly Detection with the Elastic Stack
kosho
1
720
Anomaly Detection with the Elastic Stack
kosho
1
1.8k
Getting Started with Elastic Cloud and Beats for Log Analytics
kosho
0
130
Elastic{ON} Seminar Tokyo 2016 Product Update
kosho
0
180
Introducing Elastic Cloud
kosho
0
80
Gearing Up for Elastic Stack, X-Pack 5.0 Releases
kosho
0
150
Elastic Stack Hands-on Workshop (EN)
kosho
1
160
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
41k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
430
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
500
20260129_CB_Kansai
takuyay0ne
1
270
2026年はチャンキングを極める!
shibuiwilliam
9
1.9k
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
160
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
130
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
3
1.1k
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
520
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
320
分析画面のクリック操作をそのままコード化 ! エンジニアとビジネスユーザーが共存するAI-ReadyなBI基盤
ikumi
1
190
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
4.7k
Featured
See All Featured
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
56
50k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Optimizing for Happiness
mojombo
379
71k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Design in an AI World
tapps
0
140
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How to make the Groovebox
asonas
2
1.9k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
430
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Transcript
Machine Learning for the Elastic Stack Beta in 5.4.
GA coming soon May 2017 େྠ ߂ৄ | Kosho Owa Solutions Architect, Elastic
2 Elastic Stack 100% Φʔϓϯιʔε ʮΤϯλʔϓϥΠζ൛ʯແ͠ όʔδϣϯ 5.0Ͱશ౷Ұ
3 X-Pack ؆୯ʹΠϯετʔϧ Elastic StackΛ֦ு αϒεΫϦϓγϣϯʹؚ·ΕΔ Security Alerting Monitoring Reporting
Graph Machine Learning
4 Elastic Cloud Elasticsearch, Kibanaͷ ϚωʔδυαʔϏε X-Packͷػೳར༻Մೳ Available in AWS
today
5 Elastic Cloud Enterprise ෳͷElastic StackڥΛࣗࡏʹ࡞ Logging as a serviceΛࣗ৫ʹల։
Public beta; Expected GA Q1 2017
ҟৗͷൃݟ͕τϥϒϧͷஹީΛࣔ͢ 6 Spiked 404 errors Web attack IT Operational Analytics
Security Analytics Business Analytics Unusual DNS activity Data exfiltration Rare log messages Failing sensor
Operational Analytics • ΣϒαΠτͷΞΫηετϥϑΟοΫʹҟৗແ͍͔? • Ϙοτ߈ܸऀ͕๚Ε͍ͯͳ͍͔? • σʔλϕʔε͕ग़ྗ͍ͯ͠ΔErrorϩάରॲ͢Δඞཁ͕ ͋Δͷ͔? Use
Case
Security Analytics • ϚϧΣΞʹ৵ೖ͞Ε͍ͯͳ͍͔? • ෦ऀʹΑΔηΩϡϦςΟڴҖແ͍͔? • DNSͷϩάʹɺσʔλऔͷ͕ࠟͳ͍͔? Use Case
Telemetry / Sensors ▪ ISPͷωοτϫʔΫҰ࣌ःஅʹΑΔϨΠςϯγʔͷٸ ܹͳ૿Ճ? ▪ ଞͱҟͳΔӡసύλʔϯΛͱΔυϥΠόʔ? ▪ ಛҟͳΠϕϯτλΠϓηϯαʔͷނোΛ͔ࣔ͢?
Use Case
10 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • σʔλෳࡶɺߴ࣍ݩɺߴʹมԽ • ਓؒͷࢹೝݱ࣮తʹෆՄೳ • ༰қʹݟಀ͢ Visual inspection
is not practical Where’s the anomaly?
11 ҟৗͷൃݟࢥͬͨΑΓ͍͠ • ੩తͳᮢʹΑΔʮਖ਼ৗʯͷఆٛࠔ • ϧʔϧσʔλΠϯϑϥͷมߋʹैͰ͖ͳ͍ • ༰қʹᷖճ͞Εͯ͠·͏ Rule-based alerts
are insufficient What’s the right threshold ?
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 12 • ʮڭࢣͳ͠ʯػցֶशςΫχοΫʹΑΓ ▪ աڈͷσʔλ͔Βʮਖ਼ৗʯΛֶͼϞσϧΛ࡞Δ ▪ ਖ਼ৗͷൣғ͔Βҳͨ͠ࡍʹҟৗͱͯ͠ݕ
X-Pack͕ࣗಈతͳҟৗݕͰղܾ 13 • ڭࢣͳ͠ - खಈͰͷਖ਼ৗͷೖྗ͕ෆཁ • σʔλͷมԽʹै - ೖ͞ΕΔσʔλʹΑΓܧଓతʹϞσϧΛߋ৽
• ӨڹҼࢠಛఆ - ࠜຊݪҼղੳΛՃ
ҟͳΔछྨͷҟৗΛݕ 14 • ࣌ܥྻͷϝτϦοΫ Time series - single / multiple
• ͙Εऀ Outliers in population (using entity profiling) • ك༗ͳඇߏϝοηʔδ Rare / unusual rates in “categories” of events
࣌ܥྻσʔλͷҟৗ 15 Time Metric • Single (univariate) time series Example:
Is there unusual traffic on website ?
࣌ܥྻσʔλͷҟৗ 16 Time Metric USA UK France Japan • Multiple
time series ▪ ෳͷϝτϦοΫ ▪ FieldʹΑͬͯྨ͞ΕͨϝτϦοΫ • ͦΕͧΕ͕ಠཱͯ͠ଘࡏ͢Δ Example: Is there unusual web activity from any country?
͙Εऀ Outliers in population (using entity profiling) 17 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
͙Εऀ Outliers in population (using entity profiling) 18 • ूஂͷಛ(server,
user, IPͳͲ)͔ΒϓϩϑΝΠϧΛ࡞͢Δ • ͜ͷूஂ͔Βҳ͢ΔͷΛൃݟ͢Δ Example: • Which IP address is not like the others? (indication of a bot / attacker)
ك༗ͳඇߏϝοηʔδͷมԽ Unusual or rare events (via log categorization) 19 •
ྨࣅੑʹج͍ͮͯΧςΰϦ͚ • ࣌ؒมԽʹΑΔසΛֶश • ϞσϧͱҟͳΕҟৗͱͯ͠ݕ Example: • Do my application logs contain unusual messages
X-Pack Machine Learning Elastic StackͱͷڧݻͳΠϯςάϨʔγϣϯ 20
• Elasticsearch • Kibana ༰қʹΠϯετʔϧ 21 $ elasticsearch-plugin install x-pack
$ kibana-plugin install x-pack
σϓϩΠϝϯτϞσϧ 22 Cluster Data node Apps Master node Data node
Data node Master node Master node Data node Data node ES clients, Kibana, Logstash, Beats, User apps and etc. ML node ML node # config/elasticsearch.yml xpack.ml.enabled: true node.ml: true
֎෦γεςϜͱͷଓ • API (anomaly_detectors, datafeeds, results, model_snapshots, validate) • ΠϯσοΫε
(.ml-anomalies-*)
Taking Action with X-Pack Alerting 24
Demo Single/Multiple Metrics: New York City Yellow Taxi Outliers in
Population: Web Server Log Rare Messages: DBMS Server Log 25
26 4JOHMF.FUSJD
27 .VMUJ.FUSJD
28 .VMUJ.FUSJD
29 0VUMJFSTJO1PQVMBUJPO
30 0VUMJFSTJO1PQVMBUJPO
31 3BSF.FTTBHFT
32 3BSF.FTTBHFT
࣍ͷεςοϓ 33 • Elastic StackΛ·ͩར༻͍ͯ͠ͳ͍ • ϋϯζΦϯϫʔΫγϣοϓ • Elastic StackɺX-PackΛΠϯετʔϧ
• αϯϓϧσʔλΛར༻ (ϒϩάࢀর) or ࣗͷσʔλΛೖ • MLδϣϒΛ࡞ • Elastic StackΛར༻த • X-PackΛΠϯετʔϧ (30ؒͷτϥΠΞϧ/ඇϓϩμΫγϣϯڥ) • MLδϣϒΛ࡞ (Ϩγϐ׆༻) • AlertingͰΞΫγϣϯ