Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
470
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
140
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
290
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
GopherCon Tour 概略
logica0419
2
190
SwiftUIのGeometryReaderとScrollViewを基礎から応用まで学び直す:設計と活用事例
fumiyasac0921
0
150
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
2
900
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
4
630
ユニットテストに対する考え方の変遷 / Everyone should watch his live coding
mdstoy
0
130
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
5.5k
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
1
110
いまさら聞けない ABテスト入門
skmr2348
1
210
SOC2取得の全体像
shonansurvivors
1
410
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
25
17k
Goにおける 生成AIによるコード生成の ベンチマーク評価入門
daisuketakeda
2
110
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
4 Signs Your Business is Dying
shpigford
185
22k
A designer walks into a library…
pauljervisheath
209
24k
Optimizing for Happiness
mojombo
379
70k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Documentation Writing (for coders)
carmenintech
75
5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Bash Introduction
62gerente
615
210k
GitHub's CSS Performance
jonrohan
1032
460k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Six Lessons from altMBA
skipperchong
28
4k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ