Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
460
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
350
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.1k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
270
The #FrenchData landscape
kriss
0
480
Other Decks in Technology
See All in Technology
技術職じゃない私がVibe Codingで感じた、AGIが身近になる未来
blueb
0
120
AWS全冠したので振りかえってみる
tajimon
0
130
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
200
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
12k
AIエージェントの継続的改善のためオブザーバビリティ
pharma_x_tech
6
1.1k
Create a Rails8 responsive app with Gemini and RubyLLM
palladius
0
110
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
2.1k
What's new in OpenShift 4.19
redhatlivestreaming
1
220
自分を理解するAI時代の準備 〜マイプロフィールMCPの実装〜
edo_m18
0
100
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
(非公式) AWS Summit Japan と 海浜幕張 の歩き方 2025年版
coosuke
PRO
1
190
Data Hubグループ 紹介資料
sansan33
PRO
0
1.8k
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Raft: Consensus for Rubyists
vanstee
139
7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
We Have a Design System, Now What?
morganepeng
52
7.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Done Done
chrislema
184
16k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
What's in a price? How to price your products and services
michaelherold
245
12k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Into the Great Unknown - MozCon
thekraken
39
1.8k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ