Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
440
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
350
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.1k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
760
Kaggle Criteo Challenge and Online Learning
kriss
1
270
The #FrenchData landscape
kriss
0
480
Other Decks in Technology
See All in Technology
いつも初心者向けの記事に助けられているので得意分野では初心者向けの記事を書きます
toru_kubota
2
270
OSSコントリビュートをphp-srcメンテナの立場から語る / OSS Contribute
sakitakamachi
0
1.3k
はじめてのSDET / My first challenge as a SDET
bun913
1
200
試験は暗記より理解 〜効果的な試験勉強とその後への活かし方〜
fukazawashun
0
350
IVRyにおけるNLP活用と NLP2025の関連論文紹介
keisukeosone
0
180
20250413_湘南kaggler会_音声認識で使うのってメルス・・・なんだっけ?
sugupoko
1
400
CBになったのでEKSのこともっと知ってもらいたい!
daitak
1
150
SDカードフォレンジック
su3158
0
380
フロントエンドも盛り上げたい!フロントエンドCBとAmplifyの軌跡
mkdev10
2
250
アジャイル脅威モデリング#1(脅威モデリングナイト#8)
masakane55
3
170
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
400
Vision Pro X Text to 3D Model ~How Swift and Generative Al Unlock a New Era of Spatial Computing~
igaryo0506
0
260
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
A better future with KSS
kneath
239
17k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
Typedesign – Prime Four
hannesfritz
41
2.6k
The Cost Of JavaScript in 2023
addyosmani
49
7.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Optimizing for Happiness
mojombo
377
70k
Unsuck your backbone
ammeep
670
57k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ