Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
460
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
360
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.2k
Building a Data Science Team
kriss
2
410
Lean Machine Learning
kriss
5
770
Kaggle Criteo Challenge and Online Learning
kriss
1
280
The #FrenchData landscape
kriss
0
490
Other Decks in Technology
See All in Technology
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
2
20k
ECS モニタリング手法大整理
yendoooo
1
120
モバイルアプリ研修
recruitengineers
PRO
3
260
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
6
550
TypeScript入門
recruitengineers
PRO
19
5.8k
株式会社ARAV 採用案内
maqui
0
350
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
390
あとはAIに任せて人間は自由に生きる
kentaro
3
1.1k
開発と脆弱性と脆弱性診断についての話
su3158
1
1.1k
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
4
1.7k
小さなチーム 大きな仕事 - 個人開発でAIをフル活用する
himaratsu
0
120
Yahoo!広告ビジネス基盤におけるバックエンド開発
lycorptech_jp
PRO
1
280
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Designing Experiences People Love
moore
142
24k
Designing for Performance
lara
610
69k
We Have a Design System, Now What?
morganepeng
53
7.7k
The Language of Interfaces
destraynor
160
25k
Embracing the Ebb and Flow
colly
87
4.8k
GraphQLとの向き合い方2022年版
quramy
49
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ