Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"Haute Couture" and "Prêt-à-Porter" Data Science
Search
Christophe Bourguignat
April 15, 2016
Technology
0
440
"Haute Couture" and "Prêt-à-Porter" Data Science
Talk given @ Telecom ParisTech on April 2016
Christophe Bourguignat
April 15, 2016
Tweet
Share
More Decks by Christophe Bourguignat
See All by Christophe Bourguignat
Adding Neurons to your Assistants
kriss
1
350
Software Engineers, the New Data Scientists
kriss
1
140
Machine Learning for Chief Future Officers
kriss
1
130
Whitening The Blackbox : Why And How To Explain Machine Learning Predictions ?
kriss
1
1.1k
Building a Data Science Team
kriss
2
400
Lean Machine Learning
kriss
5
750
Kaggle Criteo Challenge and Online Learning
kriss
1
260
The #FrenchData landscape
kriss
0
470
Other Decks in Technology
See All in Technology
速くて安いWebサイトを作る
nishiharatsubasa
13
14k
TAMとre:Capセキュリティ編 〜拡張脅威検出デモを添えて〜
fujiihda
2
290
自動テストの世界に、この5年間で起きたこと
autifyhq
10
8.7k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
26
7.4k
Nekko Cloud、 これまでとこれから ~学生サークルが作る、 小さなクラウド
logica0419
2
990
ソフトウェアエンジニアと仕事するときに知っておいたほうが良いこと / Key points for working with software engineers
pinkumohikan
0
110
Active Directory攻防
cryptopeg
PRO
2
860
Swiftの “private” を テストする / Testing Swift "private"
yutailang0119
0
130
分解して理解する Aspire
nenonaninu
1
350
インフラをつくるとはどういうことなのか、 あるいはPlatform Engineeringについて
nwiizo
5
2.6k
N=1から解き明かすAWS ソリューションアーキテクトの魅力
kiiwami
0
130
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
1
860
Featured
See All Featured
Speed Design
sergeychernyshev
27
790
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Experiences People Love
moore
140
23k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Gamification - CAS2011
davidbonilla
80
5.1k
Done Done
chrislema
182
16k
Fireside Chat
paigeccino
34
3.2k
The Invisible Side of Design
smashingmag
299
50k
Adopting Sorbet at Scale
ufuk
74
9.2k
Transcript
Christophe Bourguignat zelros.com /
[email protected]
/ @zelrosHQ
None
Agenda Models interpretation Models production A short history of Kaggle
MODELS INTERPRETATION
WHY ? Models opacity is a major reject cause by
users Unfortunately, predictive models that are the most powerful are usually the least interpretable
None
None
None
FEATURE IMPORTANCE
None
None
None
AEROSOLVE (AirBnb) Prior = general belief, before looking at the
data Inform the model of our prior beliefs by adding them to a text configuration file during training
None
None
None
Scikit Learn
Scikit Learn March 2014
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn March 2014 April 2015
Scikit Learn https://github.com/andosa/treeinterpreter/blob/master/treeinterpreter/treeinterpreter.py
EXEMPLE ON BOSTON DATASET
None
http://blog.datadive.net/prediction-intervals-for-random-forests/ Prediction Intervals for Random Forests
None
None
PRODUCTION
None
None
TRADITIONAL B.I. DEPARTMENT DATA ANALYSTS ETL ENGINEER DBAs
“INFINITE LOOP OF SADNESS” DATA SCIENTISTS IT / DATA ENGINEERS
SOFTWARE ENGINEERS BUSINESS http://multithreaded.stitchfix.com/blog/2016/03/16/engineers-shouldnt-write-etl/
CODE http://treycausey.com/software_dev_skills.html
COMPLEXITY AND TECHNICAL DEBT Underutilized features Undeclared consumers Pipeline Jungles
- preparing data in a ML-friendly format http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/43146.pdf
PRODUCTION FAILS Unseen category Unreproductible feat eng workflow (PMML) Leakage
in DataBase fields (churn) Monitoring
A BRIEF HISTORY OF KAGGLE
June 2013 Sept 2013 Nov 2014 Apr 2015 Mar 2016
None
None
None
None
None
None
None
Refinements : - hashing function - adaptive learning rate (different
flavours) - Vowpal Wabbit - Dropout - PyPy
None
None
None
None
None
None
None
None
QUESTIONS ? zelros.com /
[email protected]
/ @zelrosHQ