Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
62
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie chart)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
01 を動かす〜音声で対話できる自動化されたアシスタント / Running 01 - Automated Assistant with Voice Interaction
ks91
PRO
0
3
AGI (Artificial General Intelligence) の論点 / AGI (Artificial General Intelligence) Issues
ks91
PRO
0
2
Open Interpreter を動かす 〜 自動化されたアシスタントの誕生 / Running Open Interpreter - The Birth of an Automated Assistant
ks91
PRO
0
7
Linux 仮想マシンを動かす(Windows 編)(Mac 編) / Running a Linux Virtual Machine (Windows Edition) (Mac Edition)
ks91
PRO
0
13
(メタ・) ネイチャーポジティブと物質・エネルギーの循環経済 / Being (Meta-)Nature Positive and the Circular Economy of Materials and Energy
ks91
PRO
0
3
対話による知の拡張 / Extending Knowledge Through Dialogue
ks91
PRO
0
35
プロンプトに対する攻撃と対策 / Attacks Against Prompts and Countermeasures
ks91
PRO
0
34
傾聴の理論 〜 傾聴する相棒の創り方 / Theory of Listening and How to Create a Listening Partner
ks91
PRO
0
32
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
140
Other Decks in Technology
See All in Technology
事業と組織から目を逸らずに技術でリードする
ogugu9
13
2.8k
ユーザーコミュニティが海外スタートアップのDevRelを補完する瞬間
nagauta
1
190
Kaigi Effect 2025 #rubykaigi2025_after
sue445
0
160
UIパフォーマンス最適化: AIを活用して100倍の速度向上を実現した事例
kinocoboy2
1
340
名単体テスト 禁断の傀儡(モック)
iwamot
PRO
1
280
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
430
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
9
1.4k
続・やっぱり余白が大切だった話
kakehashi
PRO
4
340
DynamoDB のデータを QuickSight で可視化する際につまづいたこと/stumbling-blocks-when-visualising-dynamodb-with-quicksight
emiki
0
160
非root化Androidスマホでも動く仮想マシンアプリを試してみた
arkw
0
130
kernelvm-brain-net
raspython3
0
600
Новые мапы в Go. Вова Марунин, Clatch, МТС
lamodatech
0
2.1k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
76
9.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Facilitating Awesome Meetings
lara
54
6.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Why Our Code Smells
bkeepers
PRO
336
57k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
BBQ
matthewcrist
88
9.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 6 ( ) (WBS) 2024 6 ( ) — 2024-11 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 6 ( ) — 2024-11 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 6 ( ) — 2024-11 – p.3/23
( ) ( ) 2024 6 ( ) — 2024-11
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git “
.R” 1 2024 6 ( ) — 2024-11 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2024 6 ( ) — 2024-11 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2024 6 ( ) — 2024-11 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2024 6 ( ) — 2024-11 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2024 6 ( ) — 2024-11 – p.9/23
100% barplot 2024 6 ( ) — 2024-11 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2024 6 ( ) — 2024-11 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2024 6 ( ) — 2024-11 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2024 6 ( ) — 2024-11 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2024
6 ( ) — 2024-11 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2024 6 ( ) — 2024-11 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.19/23
2024 6 ( ) — 2024-11 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2024 6 ( ) — 2024-11 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2024 6 ( ) — 2024-11 – p.22/23
2024 6 ( ) — 2024-11 – p.23/23