Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
120
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie chart)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
0
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 1 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 1
ks91
PRO
0
52
成果と意思決定 / Performance and Making Decisions
ks91
PRO
0
50
ボランティア / Volunteers
ks91
PRO
0
39
理事会 / Board of Directors
ks91
PRO
0
39
成果 / Achievements
ks91
PRO
0
39
意思決定 / Decision-Making
ks91
PRO
0
33
ファンディングとデジタル市民社会 / Funding and Digital Civil Society
ks91
PRO
0
53
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
90
Other Decks in Technology
See All in Technology
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
140
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
スクラムを一度諦めたチームにアジャイルコーチが入ってどう変化したか
kyamashiro73
0
110
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
290
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
AI with TiDD
shiraji
1
330
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
130
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
4.2k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
310
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
740
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
270
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
エンジニアに許された特別な時間の終わり
watany
106
220k
Code Review Best Practice
trishagee
74
19k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
250
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
58
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
140
The World Runs on Bad Software
bkeepers
PRO
72
12k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 6 ( ) (WBS) 2024 6 ( ) — 2024-11 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 6 ( ) — 2024-11 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 6 ( ) — 2024-11 – p.3/23
( ) ( ) 2024 6 ( ) — 2024-11
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git “
.R” 1 2024 6 ( ) — 2024-11 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2024 6 ( ) — 2024-11 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2024 6 ( ) — 2024-11 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2024 6 ( ) — 2024-11 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2024 6 ( ) — 2024-11 – p.9/23
100% barplot 2024 6 ( ) — 2024-11 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2024 6 ( ) — 2024-11 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2024 6 ( ) — 2024-11 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2024 6 ( ) — 2024-11 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2024
6 ( ) — 2024-11 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2024 6 ( ) — 2024-11 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.19/23
2024 6 ( ) — 2024-11 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2024 6 ( ) — 2024-11 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2024 6 ( ) — 2024-11 – p.22/23
2024 6 ( ) — 2024-11 – p.23/23