Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kenji Saito
PRO
December 10, 2023
Business
0
260
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
December 10, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
非営利組織の起業/発表と総括 / Starting up a Nonprofit Organization, Presentation and Summary
ks91
PRO
0
51
自己開発 / Self-Development
ks91
PRO
1
13
あなたは何によって憶えられたいですか? / What Do You Want to be Remembered for?
ks91
PRO
0
15
ボランティアと理事会 / Volunteers and Board of Directors
ks91
PRO
0
38
メタ・ネイチャーポジティブへの道 / The Path to Meta Nature Positive
ks91
PRO
0
31
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 3 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 3
ks91
PRO
0
49
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
83
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 1 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 1
ks91
PRO
0
78
成果と意思決定 / Performance and Making Decisions
ks91
PRO
0
67
Other Decks in Business
See All in Business
DeNA社のAI活用スキル評価
kobira_official
PRO
0
110
株式会社Gizumo_会社紹介資料(2026.1更新)
gizumo
0
490
株式会社EventHub 会社紹介資料
eventhub
1
43k
サステナビリティレポート2025
hamayacorp
0
150
暗号商流(クリプト・フロー) 〜ボーダレスEC/POD with JPYC〜
showyingart
0
120
「2025年のAI」と「2026年のAI」
masayamoriofficial
1
1.3k
[1] Power BI Deep Dive [2026-02]
ohata_bi
2
130
会社紹介資料 / ProfileBook
gpol
5
55k
それでも、変えていくーエンタープライズでビジネスと_開発をつなぐアジャイル奮闘記などから学んだAgile Leadership
junki
1
130
フルカイテン株式会社 採用資料
fullkaiten
0
81k
「要はバランス」を見極める - ADR実践で目指す技術的卓越への道 / It Depends: Practicing ADRs Toward Technical Excellence
ewa
0
1.8k
採用サイト 中途ページ添付資料
naomichinishihama
0
240
Featured
See All Featured
Ethics towards AI in product and experience design
skipperchong
2
190
Automating Front-end Workflow
addyosmani
1371
200k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
130
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Deep Space Network (abreviated)
tonyrice
0
44
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
The browser strikes back
jonoalderson
0
360
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
71
Transcript
generated by Stable Diffusion XL v1.0 2023 6 ( )
(WBS) 2023 6 ( ) — 2023-12 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 6 ( ) — 2023-12 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 6 ( ) — 2023-12 – p.3/23
( ) ( ) 2023 6 ( ) — 2023-12
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git 1
2023 6 ( ) — 2023-12 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2023 6 ( ) — 2023-12 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2023 6 ( ) — 2023-12 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2023 6 ( ) — 2023-12 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2023 6 ( ) — 2023-12 – p.9/23
100% barplot 2023 6 ( ) — 2023-12 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2023 6 ( ) — 2023-12 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2023 6 ( ) — 2023-12 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2023 6 ( ) — 2023-12 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2023
6 ( ) — 2023-12 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2023 6 ( ) — 2023-12 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.19/23
2023 6 ( ) — 2023-12 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2023 6 ( ) — 2023-12 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2023 6 ( ) — 2023-12 – p.22/23
2023 6 ( ) — 2023-12 – p.23/23