Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
Search
Kenji Saito
PRO
December 10, 2023
Business
0
190
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
December 10, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
発表と総括 / Presentations and Summary
ks91
PRO
0
7
市民科学にAI はどう活用できるか / How AI Can Be Used for Citizen Science
ks91
PRO
0
11
グリーンマイニングが Bitcoin プロトコルに及ぼす影響 / Impact of Green Mining on the Bitcoin Protocol
ks91
PRO
0
18
FinTech 13-14 : Ideathon, Presentations and Conclusions
ks91
PRO
0
56
デザイン相談会 / Design Consultation
ks91
PRO
0
13
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
52
メタ自然選択と製品トレーサビリティー / Meta-Natural Selection and Product Traceability
ks91
PRO
0
13
伝統的金融に呑まれる分散型金融 / Decentralised Finance Engulfed by Traditional Finance
ks91
PRO
0
16
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
26
Other Decks in Business
See All in Business
パレットクラウド株式会社 採用ピッチ資料
palettecloud
0
5.6k
DMM TECH VISION 2021~
dmm
0
280
Company Profile
katsuegu23
2
6.6k
Godot 会社紹介資料(開発職向け) / Godot Pitch Deck
godot
0
1.1k
culturebook_WeddingParkShip
weddingpark
0
700
駅消化設備維持管理業務へのDX活用
tokyo_metropolitan_gov_digital_hr
0
150
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
4k
もしドラッカーがアジャイルコーチになったら / If Drucker Were an Agile Coach
fkino
2
430
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
780
ドローンを活用した水管橋の点検
tokyo_metropolitan_gov_digital_hr
1
150
(18枚)製造業の営業を最大化させる「ブリッジ管理」とは?
nyattx
PRO
1
140
【新卒向け】会社説明資料|ROBOTPAYMENT
robot_payment
1
370
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
RailsConf 2023
tenderlove
29
910
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Building Applications with DynamoDB
mza
90
6.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
17k
Building Your Own Lightsaber
phodgson
103
6.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Transcript
generated by Stable Diffusion XL v1.0 2023 6 ( )
(WBS) 2023 6 ( ) — 2023-12 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 6 ( ) — 2023-12 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 6 ( ) — 2023-12 – p.3/23
( ) ( ) 2023 6 ( ) — 2023-12
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git 1
2023 6 ( ) — 2023-12 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2023 6 ( ) — 2023-12 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2023 6 ( ) — 2023-12 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2023 6 ( ) — 2023-12 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2023 6 ( ) — 2023-12 – p.9/23
100% barplot 2023 6 ( ) — 2023-12 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2023 6 ( ) — 2023-12 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2023 6 ( ) — 2023-12 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2023 6 ( ) — 2023-12 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2023
6 ( ) — 2023-12 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2023 6 ( ) — 2023-12 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.19/23
2023 6 ( ) — 2023-12 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2023 6 ( ) — 2023-12 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2023 6 ( ) — 2023-12 – p.22/23
2023 6 ( ) — 2023-12 – p.23/23