Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた検定(補講) (2) — カイ二乗検定 / Other Tests Using R...
Search
Kenji Saito
PRO
January 21, 2024
Business
0
120
R を用いた検定(補講) (2) — カイ二乗検定 / Other Tests Using R (1) - Chi-Square Test
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第10回で使用したスライドです。
Kenji Saito
PRO
January 21, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
29
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
タケウチグループRecruit
takeuchigroup
0
2.1k
Digital Experience, Inc. - Company Deck
sprasiainc
0
18k
20241211_CMCNagoya_9
hideki_ojima
1
850
SUN METALON会社紹介・採用説明資料
shindoyuto
0
530
ログラス会社紹介資料 / Loglass Company Deck
loglass2019
7
250k
P2B Haus法人サポータープランのご提案
sotarok
2
1.1k
pmconf2024 意思決定の質とスピードを上げるドキュメントの極意
issei123
3
7.1k
ストーリーテリングでチームに”熱"を伝える🔥
inagakikay
1
11k
ハードウェア企業から700万ユーザーを抱えるB2B SaaSへ:PMのキャリアシフトで見えた共通点とギャップ
kubell_hr
0
4.2k
Azure Functions HTTPトリガーにおけるタイムアウトでハマったこと
recruitengineers
PRO
2
260
(7枚)具体と抽象の往復運動ができる上司と部下との4つの組合せ
nyattx
PRO
3
1.3k
経験やセンスに頼らずに成果を出すためのチームマネジメント実践ガイド / Team Management Without Relying on Experience or Intuition
happy_imafuku
5
12k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1366
200k
How to train your dragon (web standard)
notwaldorf
88
5.8k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Music & Morning Musume
bryan
46
6.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Building an army of robots
kneath
302
44k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Designing for Performance
lara
604
68k
Code Reviewing Like a Champion
maltzj
521
39k
Transcript
generated by Stable Diffusion XL v1.0 2023 10 R (
) (2) — χ2 (WBS) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 10 R ( ) (2) — χ 2
— 2024-01 – p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.3/14
χ2 : : ( ) 3 ( ) 2023 10
R ( ) (2) — χ 2 — 2024-01 – p.4/14
χ2 ( ) ( ) ( ) χ2 = n
i=1 (fi − ˆ fi )2 ˆ fi ( f (frequency) ˆ f ( )) χ2 df df = n − 1 χ2 = nj j=1 ni i=1 (fji − ˆ fji )2 ˆ fji (ni × nj ) df = (ni − 1) × (nj − 1) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.5/14
R 10 4 14 2 4 6 12 8 20
= × ( 12:8 14 ) 8.4 5.6 14 3.6 2.4 6 12 8 20 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.6/14
χ2 ( ) 1 6 (H0 ) # ( H_0
) > chisq.test(c(28, 33, 25, 35, 27, 32), p=c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)) # ( H_0 ) > chisq.test(c(42, 33, 25, 35, 27, 18), p=c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)) ‘chisq.test(. . . )’ ( ) ( ) ( ) ← R χ2 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.7/14
( ) 0 5 10 15 20 0.00 0.05 0.10
0.15 χ2(5) x dchisq(x, df) χ2 0.05 (5) = 11.1 χ2 = 2.53 “ .R” source chisqdistg(5, chisq=2.5333) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.8/14
( ) 0 5 10 15 20 0.00 0.05 0.10
0.15 χ2(5) x dchisq(x, df) χ2 0.05 (5) = 11.1 χ2 = 11.9 chisqdistg(5, chisq=11.867) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.9/14
χ2 (1) R A 16 4 20 12 8 20
28 12 40 options(digits=7) # A <- matrix(c(16, 12, 4, 8), 2, 2) chisq.test(A, correct=F) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.10/14
0 5 10 15 20 0.0 0.2 0.4 0.6 0.8
χ2(1) x dchisq(x, df) χ2 0.05 (1) = 3.84 χ2 = 1.9 options(digits=3) chisqdistg(1, chisq=1.9048) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.11/14
χ2 (2) B 160 40 200 120 80 200 280
120 400 options(digits=7) # B <- matrix(c(160, 120, 40, 80), 2, 2) chisq.test(B, correct=F) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.12/14
0 5 10 15 20 0.0 0.2 0.4 0.6 0.8
χ2(1) x dchisq(x, df) χ2 0.05 (1) = 3.84 χ2 = 19 options(digits=3) chisqdistg(1, chisq=19.048) 2023 10 R ( ) (2) — χ 2 — 2024-01 – p.13/14
2023 10 R ( ) (2) — χ 2 —
2024-01 – p.14/14