$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metadata Management in Distributed File Systems
Search
UENISHI Kota
December 20, 2023
Technology
2
520
Metadata Management in Distributed File Systems
Database Engineering Meetup #1 LT
https://scalar.connpass.com/event/298887/
UENISHI Kota
December 20, 2023
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
52
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
420
Apache Ozone behind Simulation and AI Industries
kuenishi
0
400
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.2k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
750
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.4k
Mesos Frameworkの作り方 (How to Make Mesos Framework)
kuenishi
7
2.4k
Other Decks in Technology
See All in Technology
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
9.7k
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
260
学術的根拠から読み解くNotebookLMの音声活用法
shukob
0
500
Active Directory 勉強会 第 6 回目 Active Directory セキュリティについて学ぶ回
eurekaberry
10
3.4k
履歴テーブル、今回はこう作りました 〜 Delegated Types編 〜 / How We Built Our History Table This Time — With Delegated Types
moznion
10
6.5k
Introduction to Bill One Development Engineer
sansan33
PRO
0
320
経営から紐解くデータマネジメント
pacocat
7
1.6k
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
170
"'TSのAPI型安全”の対価は誰が払う?不公平なスキーマ駆動に終止符を打つハイブリッド戦略
hal_spidernight
0
200
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
2
670
『ソフトウェア』で『リアル』を動かす:クレーンゲームからデータ基盤までの統一アーキテクチャ / アーキテクチャConference 2025
genda
0
1.9k
Android Studio Otter の最新 Gemini 機能 / Latest Gemini features in Android Studio Otter
yanzm
0
490
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Language of Interfaces
destraynor
162
25k
Practical Orchestrator
shlominoach
190
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Designing for humans not robots
tammielis
254
26k
Designing for Performance
lara
610
69k
Being A Developer After 40
akosma
91
590k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
KATA
mclloyd
PRO
32
15k
4 Signs Your Business is Dying
shpigford
186
22k
Embracing the Ebb and Flow
colly
88
4.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Transcript
分散ファイルシステムの メタデータ管理 Database Engineering Meetup LT 2023/12/20 @kuenishi Metadata Management
in Distributed File Systems
分散ファイルシステムとは • 大きなblob をいくらでも置けるシステム ◦ オブジェクトストレージともいう場合がある ◦ POSIX API でアクセスできるかどうかで扱いが異なる場合が多い
• 大きな: 5TB くらいまで • いくらでも (※): ◦ AWS S3: 100 Trillion (2021) ◦ Azure: 4 Trillion (2008) • オンプレの場合 ◦ ストレージノード追加すれば空間を増やせる • ※ AWS: S3 storage now holds over 100 trillion objects ZDNet
ファイルを分割して(分散)保存する 09230843975 ….. 90934045350 ….. …... blob: /bucket/path/to/filename 90934045350 …..
09230843975 ….. ….. …... 90934045350 ….. 09230843975 ….. ….. …... 90934045350 ….. 09230843975 ….. ….. …... host: A host: B host: C
分散ファイルシステムのメタデータ • ファイルの断片をどこにどれだけ置い たか ◦ [file id, offset, length, replica,
host] • ファイルの名前 ◦ [path, file id] ◦ [directory, children] • ファイルの付属情報 ◦ atime, mtime, ctime ◦ owner, group, ACL-ish stuff, ◦ •
メタデータを保存するDBが必要 block10 block11 block12 block134 …. block10 block41 block42 block45
…. block42 block45 block92 block98 …. …. Servers create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...) create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...) create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...)
分散ファイルシステムの評価観点 HPC面 • io500.org • メタデータの読み書き性能 • blobデータの読み書き性能 • (IIRC)
相加平均でスコアリング • POSIX必須 SC23 No.1 (ANL) • blob: 10TiB/sec • meta: 102Mops/sec エンプラ or Web面 • 永続性があるか • 非計画のダウンタイムはどの程度か • 専門家でないエンジニアでも扱えるか • サービスの持続性 • エコシステムやサードパーティ • 必要十分な機能があるか • etc…
GFS, HDFS (Apache Hadoop) • Single replicated master • 独自実装
• ブロック単位の管理 The Google File System (SOSP’03) HDFS Architecture Guide
Lustre • HPCで定番 ◦ 富嶽で採用 • 2000年発表 2003年 1.0リリース •
メタデータ、ブロックともに永続性は個々の ノードのストレージレイヤで保証 • 最近だとOpenZFSが定番らしい • 現代だとDDNやLLIO のようなステージング やキャッシュレイヤを挟んで高速化 • MDSの構造は独自(要調査) Introduction to Lustre Architecture
Ceph • CRUSHという独自のアルゴリズムでブロックをい い感じに重み付けしつつ分散管理できた • ディレクトリツリーは Dynamic Subtree Partitioning •
Inktank起業→RedHat • 多くの国産クラウドサービスでオブジェクトスト レージに使われた実績がある CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data (SC’06) Ceph: a scalable, high-performance distributed file system (OSDI’06)
Gfarm • 数少ない現存する国産の分散ファイルシステム • メタデータ管理はPostgreSQL ◦ 運用でPostgreSQLをいい感じにする • 2001年〜 ペタバイトスケールデータインテンシブ
コンピューティングのた めのGrid Datafarmアーキテクチャ
Apache Ozone (1/2) • HDFSの後継OSS ◦ 最初はSubprojectだったが2019年に独立 • S3 APIとHDFS
API両方喋る • メタデータを分けて別コンポーネントで管理する ことにより、HDFS のNameNodeよりも高いメタ データ性能を目指した • ファイルツリーはOzone Manager • ブロック配置はStorage Container Manager Apache Ozone: Overview
Apache Ozone (2/2) • メタデータはRocksDBに保存 • RocksDBへの更新バッチをRaft (Ratis)でレプリケーション • OMではdouble
buffering をしてスループットを上げている Ozone (Ratis leader) RocksDB Ozone (Ratis follower) RocksDB Ozone (Ratis follower) RocksDB Write Read
Collossus • GFS の後継で現用の分散ファイルシステム • Spannerをメタデータ管理に使っている • エクサバイト置けるらしい Colossus の仕組み:
Google のスケーラブルなスト レージ システムの舞台裏
Others • DAOS ◦ Intel 謹製→OSSとして独立 ◦ OptaneDC向けの最適化が入っている ◦ HLCというのを使ってメタデータ性能を向
上したらしい ◦ io500 No.1 • • • AWS S3 ◦ 言わずとしれたデファクト ◦ In-house something ◦ Range分散するものっぽい ◦ 昔は固定長prefixベースだった模 様 ◦ 100兆オブジェクト