Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Argo Workflow によるMLジョブ管理
Search
Livesense Inc.
PRO
March 27, 2019
Technology
2
840
Argo Workflow によるMLジョブ管理
MACHINE LEARNING Meetup KANSAI #4
2019/3/27
Livesense Inc.
PRO
March 27, 2019
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
2.5k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
53
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.5k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
440
26新卒_総合職採用_会社説明資料
livesense
PRO
0
11k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
38k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
270
EM候補者向け転職会議説明資料
livesense
PRO
0
130
Other Decks in Technology
See All in Technology
Snowflake Intelligence × Document AIで“使いにくいデータ”を“使えるデータ”に
kevinrobot34
1
120
slog.Handlerのよくある実装ミス
sakiengineer
4
480
AWSで始める実践Dagster入門
kitagawaz
1
750
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
440
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
120
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
280
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.3k
OCI Oracle Database Services新機能アップデート(2025/06-2025/08)
oracle4engineer
PRO
0
180
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
3
590
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
590
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
230
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
500
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.4k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Optimizing for Happiness
mojombo
379
70k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
BBQ
matthewcrist
89
9.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
4 Signs Your Business is Dying
shpigford
184
22k
Code Review Best Practice
trishagee
71
19k
Designing Experiences People Love
moore
142
24k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Speed Design
sergeychernyshev
32
1.1k
Transcript
Argo Workflow ʹΑΔMLδϣϒཧ Shotaro Tanaka / @yubessy / Ϧϒηϯε (ژΦϑΟε)
MACHINE LEARNING Meetup KANSAI #4 LT
͜Εͷհ͠·͢
https://argoproj.github.io/
Կ͕Ͱ͖Δͷ͔ "Container native workflow engine for Kubernetes" • ෳͷίϯςφΛྻ/ฒྻ࣮ߦ͢ΔϫʔΫϑϩʔΛఆٛͰ͖Δ •
σʔλύΠϓϥΠϯ, CI/CD ͳͲͷར༻Λఆ • ৽όʔδϣϯͰ DAG αϙʔτ • Argo ϕʔεͷ༷ʑͳϓϩμΫτ • Argo CD: GitOps ʹΑΔ CD Λ࣮ݱ • Argo Event: ϫʔΫϑϩʔͷτϦΨ
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: ml-workflow- spec: entrypoint: main
templates: - name: main steps: - - name: load-dataset template: load-dataset - - name: train-model-1 template: train-model arguments: parameters: [{name: model, value: model1}] - name: train-model-2 template: train-model arguments: parameters: [{name: model, value: model2}] ...
... - name: load-dataset container: image: postgres:latest command: [sh, -c]
args: ["psql db -c 'SELECT * FROM dataset' -A -F, > dataset.csv"] - name: train-model inputs: parameters: [{name: model}] container: image: train-model command: [sh -c] args: ["python train_model.py --model={{inputs.parameters.model}}"]
None
ͳͥ͏ͷ͔ ʮϞσϧ͕Ͱ͖ͨͷͰɺαΫοͱӡ༻ʹ͍ͤͨʯ • MLϞσϧͷ։ൃऀ • SQL Ͱσʔλऔಘ ʙ Ϟσϧ༧ଌΛϑΝΠϧʹग़ྗ •
Docker Ͱಈ͘Α͏ʹ͓ͯ͘͠ • MLγεςϜͷ։ൃऀ • DBIO Ϟσϧɾ༧ଌ݁ՌͷσϦόϦॲཧΛ࣮ • Argo Ͱͯ͢ΛΈ߹ΘͤͨϫʔΫϑϩʔΛ࡞Δ → ίϯςφ୯ҐͰׂ୲
ϦϒηϯεͰͷར༻ྫ • ग़ྗͷDBॻ͖ࠐΈॲཧͷ • Ϟσϧͷ Continuous Delivery • ฒߦॲཧ
ग़ྗͷDBॻ͖ࠐΈॲཧͷ • ٻਓαΠτͷݕࡧॱҐ੍ޚ༻༧ଌϞσϧ • όονͰֶशɾ༧ଌ͠ग़ྗΛDBʹॻ͖ࠐΈ • Ϟσϧͷ։ൃऀCSVग़ྗ·Ͱ࣮ͯ͠ Docker Խ͓ͯ͘͠ •
ॻ͖ࠐΈॲཧΫϨσϯγϟϧཧγεςϜͷ։ൃऀ͕࣮ steps: - - name: train-model # MLϞσϧͷ։ൃऀ͕࣮ - - name: predict-rates # MLϞσϧͷ։ൃऀ͕࣮ (ग़ྗCSV) - - name: import-to-db # MLγεςϜͷ։ൃऀ͕࣮ # ※ग़ྗϑΝΠϧڞ༗ϘϦϡʔϜͰड͚͠
Ϟσϧͷ Continuous Delivery • Ӧۀઓུɾࠂग़ߘΛఆͨ͠ٻਓޮՌਪఆϞσϧ • ϚʔέςΟϯά୲ऀ͚ͷϏϡʔϫΛ R-Shiny Ͱ։ൃɾӡ༻ •
ਪఆॲཧ͕ྃ͢ΔͨͼʹϏϡʔϫΛσϓϩΠͯ͠ϞσϧΛߋ৽ steps: - - name: estimate # ਪఆॲཧ - - name: upload-model # ࡞͞ΕͨϞσϧΛετϨʔδʹอଘ - - name: update-viewer # ϏϡʔϫΛσϓϩΠ͢͠
Ϟσϧͷ Continuous Delivery (ଓ͖) • Ϗϡʔϫಉ͡ Kubernetes ΫϥελͰ Deployment ͱ͍ͯಈ͍͍ͯΔ
• kubectl set env Ͱ Deployment Λߋ৽͢Δ͜ͱͰ৽͍͠ϞσϧΛಡΈࠐΉ • Rolling Update ʹΑΓμϯλΠϜແ͠ͷϞσϧߋ৽Մೳ - name: update-viewer container: image: kubectl command: ["sh", "-c"] args: ["kubectl set env deployment/viewer-app MODEL={{workflow.parameters.model}}"]
ฒߦॲཧ • WebςετͷଟόϯσΟοτ࠷దԽͷॏΈߋ৽δϣϒ • ෳͷςετ͕͓ͬͯΓɺ֤ςετͷਪఆॲཧฒߦ࣮ߦ͍ͨ͠ steps: - - name: list-experiments
# ਪఆॲཧ͕ඞཁͳςετΛϦετΞοϓ - - name: calc-weights # ͜ΕΛϦετΞοϓ͞Εͨςετͷ͚ͩฒߦ࣮ߦ͢Δ # ग़ྗύϥϝʔλͷϦετΛ͢ͱͦͷ͚ͩίϯςφ্ཱ͕͕ͪΔ # Ϧετ [{"experimentId": 1}, {"experimentId": 2}] ͷΑ͏ͳ JSON withParams: "{{steps.list-experiments.outputs.parameters.experiments}}" # Ϧετͷ֤ΞΠςϜ͔ΒύϥϝʔλΛऔΓग़ͯ͢͠ arguments: parameters: [{name: experimentId, value: "{{item.experimentId}}"}]
ฒߦॲཧ (ଓ͖) templates: - name: list-experiments container: ... outputs: parameters:
- name: experiments # ग़ྗύϥϝʔλͷϦετΛϑΝΠϧࢦఆ valueFrom: {path: /output/experiments.json} - name: calc-weights container: ... inputs: parameters: # ύϥϝʔλΛೖྗͱͯ͠ड͚औΔ - name: experimentId
None
·ͱΊ • ෳίϯςφ͔ΒͳΔϫʔΫϑϩʔΛ؆୯ʹΊΔ • ͭͬͨ͘MLϞσϧΛ͘͢ӡ༻͍ͨ͠ͱ͖ʹศར هࣄ͋Γ·͢: Argo ʹΑΔίϯςφωΠςΟϒͳσʔλύΠϓϥΠϯͷϫʔΫϑϩʔཧ