Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GC25 Recap+: Advancing Go Garbage Collection wi...
Search
Takuto Nagami
September 30, 2025
Technology
1
630
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
2025/9/30 Go 1.25 リリースパーティ & GopherCon 2025 報告会にて登壇した際の資料です。
Takuto Nagami
September 30, 2025
Tweet
Share
More Decks by Takuto Nagami
See All by Takuto Nagami
Fundamentals of Memory Management in Go: Learning Through the History
logica0419
0
21
GopherCon Tourのつくりかた
logica0419
1
54
Go言語はstack overflowの夢を見るか?
logica0419
0
510
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
200
GopherCon Tour 概略
logica0419
2
290
言葉の壁を越えて ~Gophers EXと歩む海外登壇への道~
logica0419
1
53
Maintainer Meetupで「生の声」を聞く ~講演だけじゃないKubeCon
logica0419
1
530
理想の英語力に一直線!最高効率な英語学習のすゝめ
logica0419
6
440
Gophers EX: What We’ve Been Up To in Feb–May 2025 / 2025年2~5月 Gophers EX活動報告書
logica0419
0
84
Other Decks in Technology
See All in Technology
組織改革から開発効率向上まで! - 成功事例から見えたAI活用のポイント - / 20251016 Tetsuharu Kokaki
shift_evolve
PRO
2
230
Node.js 2025: What's new and what's next
ruyadorno
0
890
「魔法少女まどか☆マギカ Magia Exedra」のIPのキャラクターを描くための3Dルック開発
gree_tech
PRO
0
130
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
940
旅で応援する✈️ NEWTが目指すコミュニティ支援とあたらしい旅行 / New Travel: Supporting by NEWT on Your Journey
mii3king
0
130
AI AgentをLangflowでサクッと作って、1日働かせてみた!
yano13
1
110
AI-Readyを目指した非構造化データのメダリオンアーキテクチャ
r_miura
1
270
「最速」で Gemini CLI を使いこなそう! 〜Cloud Shell/Cloud Run の活用〜 / The Fastest Way to Master the Gemini CLI — with Cloud Shell and Cloud Run
aoto
PRO
0
140
「魔法少女まどか☆マギカ Magia Exedra」の多様なバトルの開発を柔軟かつ効率的に実現するためのPure C#とUnityの分離について
gree_tech
PRO
0
230
Databricks AI/BI Genie の「値ディクショナリー」をAmazonの奥地(S3)まで見に行く
kameitomohiro
1
370
Claude Codeを駆使した初めてのiOSアプリ開発 ~ゼロから3週間でグローバルハッカソンで入賞するまで~
oikon48
10
5.3k
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
1
250
Featured
See All Featured
Done Done
chrislema
185
16k
Raft: Consensus for Rubyists
vanstee
140
7.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Building Adaptive Systems
keathley
44
2.8k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Statistics for Hackers
jakevdp
799
220k
Transcript
Takuto Nagami @logica0419 Recap+: Advancing Go Garbage Collection with Green
Tea
今回Recapするのは… Advancing Go Garbage Collection with Green Tea by Michael
Knyszek
要約 (TL;DR): Go 1.26から ガベージコレクションが 速くなります。
本題に入る前に 前提知識をおさらい しておきましょう
スタック・ヒープと ガベージコレクション
アプリケーションから見たメモリ . . . • Key-value storeの形で表される ◦ Key: Memory
address ◦ Value: 各アドレス1バイト • ほとんどの高級言語は、変数を メモリに格納する時、スタック とヒープの2つの領域を(言語側 で作って)使い分ける 0x0000 0x0001 0x0002 0x0003
. . . スタック
. . . main() stack frame スタック
. . . main() stack frame 5 スタック {v addr}
. . . main() stack frame 5 a() stack frame
スタック {v addr}
. . . main() stack frame 5 a() stack frame
5 スタック {arg addr} {v addr}
. . . main() stack frame 5 a() stack frame
5 7 スタック {arg addr} {a addr} {v addr}
. . スタック main() stack frame 5 a() stack frame
{arg addr} {a addr} {v addr} 5 7 b() stack frame
. . スタック main() stack frame 5 a() stack frame
{arg addr} {arg addr} {a addr} {v addr} 5 7 b() stack frame 7
. . スタック main() stack frame 5 a() stack frame
{arg addr} {b addr} {arg addr} {a addr} {v addr} 5 7 b() stack frame 7 1
. . . スタック main() stack frame 5 a() stack
frame {arg addr} {a addr} {v addr} 5 7
. . . スタック main() stack frame 5 {v addr}
. . . スタック プログラム終了
スタックが苦手なデータ • 大きなデータ ◦ Stack Overflowを誘発する • コンパイル時にサイズが決まらないデータ ◦ slice・mapなど
◦ スタックはコンパイル時に全て定義される ▪ 動的にサイズを変えるのは効率が悪い • 複数の関数でまたがって使うデータ ◦ グローバル変数など
ヒープ . . . . . . . main() stack
frame
ヒープ . . . . . . . [] {slice_h
addr} main() stack frame
. . . . . . . [] {slice_h addr}
{slice addr} main() stack frame ヒープ {slice_h addr}
ヒープ内でのオブジェクト管理 • 色んなデータ(オブジェクト)がヒープに入る ◦ バラバラに入れていたら管理が面倒 int (8 byte) struct (可変サイズ)
ポインタ (8 byte)
… … ヒープ内でのオブジェクト管理 • 同サイズのオブジェクトをスパンでまとめる int (8 byte) struct (8
byte) struct struct (32 byte) struct struct int int スパン1 (8 byte用) スパン2 (8 byte用) スパン3 (32 byte用) int int
ヒープ内でのオブジェクト管理 • スパン(mspan)はもっと大きな単位でまとめられる ◦ mcentral ▪ 同じサイズのスパンをグループ化 ◦ arena ▪
mheapが1回で引き出してくるメモリ量 ▪ mcentralを複数格納 ◦ mheap ▪ ヒープ本体
ガベージコレクション(GC) • Cなどでは、ヒープに置いたデータを使わなくなった時 プログラマーが明示的に削除 ◦ 削除忘れによってメモリ使用量が無限に増える memory leakが多発 ↓ •
要らなくなったヒープ内のデータを自動的に削除する 機能がガベージコレクション
これまでのGCと その挙動
GoのGC • Mark and Sweepアルゴリズム ◦ Mark phase: まだ使われているオブジェクトを確認 ◦
Sweep phase: マークされていない物を削除 • Tri-color markingを使うことで中断可能に ◦ 詳しいことは今回割愛 • 色々頑張ってアプリケーションと並列で実行 ◦ 今回割愛
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T ここから、Tri-color markingの root scan phase
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T ここから、Tri-color markingの mark phase
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T ここから sweep phase
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T [4]*T [4]*T
メモリ局所性と OSのメモリ読み込み戦略
メモリ局所性(参照の局所性)とは • データアクセスの傾向に関する概念 • 時間的局所性 ◦ 同じデータには近いうちに再度アクセスされやすい • 空間的局所性 ◦
近い場所にあるデータは一緒にアクセスされやすい • ↑ のような傾向が強いと「局所性が高い」 • 世の中のタスクのほとんどは局所性が高いので、OSは それに合わせて最適化している
OSのメモリ読み込み戦略 • 多段キャッシュをする ◦ CPUの処理部に近づくほど、小さく速い • この構造を活かすための読み込み戦略が… CPU内 キャッシュ (多段)
メモリ (DRAM) ストレージ 小さくて速い 大きくて遅い
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい ページ1 (4 kB)
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 データを 使って処理 ページ1 (4 kB)
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 次(ページ1)の データ欲しい ページ1 (4 kB)
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 次(ページ1)の データ欲しい ページ1 (4 kB)
OSのメモリ読み込み戦略 • ページングを行う メモリ ページ1 (4 kB) ページ2 (4 kB)
ページ3 (4 kB) CPU キャッシュ CPU 処理部 次データを 使って処理 ページ1 (4 kB)
キャッシュ戦略は 時間・空間的局所性が高い タスクに効率化されている キャッシュは局所性の高さに対処するという表現が自然
OSのメモリ読み込み戦略 • 近くのページをまとめて取ることも (更なる空間的 局所性対策) メモリ ページ1 (4 kB) ページ2
(4 kB) ページ3 (4 kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 ページ1内 データ欲しい ページ1 (4 kB) ページ2 (4 kB) • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 データを 使って処理 ページ1 (4 kB) ページ2 (4 kB) • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 ページ2内 データ欲しい ページ1 (4 kB) ページ2 (4 kB) • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 ページ2内 データ欲しい ページ1 (4 kB) ページ2 (4 kB) • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSのメモリ読み込み戦略 メモリ ページ1 (4 kB) ページ2 (4 kB) ページ3 (4
kB) CPU キャッシュ CPU 処理部 データを 使って処理 ページ1 (4 kB) ページ2 (4 kB) • 近くのページをまとめて取ることも (更なる空間的 局所性対策)
OSは様々な手法を用いて メモリ局所性の高いタスクを 効率的に走らせている これがGreen Teaへの伏線
Green Tea🍵とその挙動
… … おさらい: Goのヒープ管理 • 同サイズのオブジェクトをスパンでまとめる int (8 byte) struct
(8 byte) struct struct (32 byte) struct struct int int スパン1 (8 byte用) スパン2 (8 byte用) スパン3 (32 byte用) int int
スパンの実態 • Goのスパンは、OSのページを数個まとめたもの ◦ 原則となり合ったページが使われる • 同じスパンを読む方がOSのキャッシュ戦略を活かせる object スパン (32kB)
ページ (4 kB) ページ (4 kB) ページ (4 kB) object object object
これまでのGCの課題 • GC自体のメモリ局所性が低い ◦ スパン(ページ)間を飛び回っている ◦ OSのキャッシュ戦略を上手く活かせてない ▪ 遠いページに移動するたびキャッシュリセット •
↑ のせいでメモリ読み込みが遅く、CPUの処理性能を フルで活かせない ◦ CPUの進歩の方が速く、昔とは犠牲にしたいものが 逆になってしまった
Green Tea🍵 • メモリ局所性の高い、新たなマークアルゴリズム ◦ Tri-colorを拡張し、スパンごとにオブジェクトを スキャンする • 実は名前の由来が日本 ◦
Green Teaのプロトタイプを作ったのは、今のTech LeadであるAustine Clements ◦ プロトタイピングの大部分は、Austineさんが横浜 のカフェで大量の抹茶をしばきながら行った
Green Teaはスパンごとの オブジェクトスキャンで 局所性を上げている 実際の挙動を見てみましょう
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T おさらい: ここから sweep phase
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T T [4]*T [4]*T [4]*T
スタック var x *T var y *T 状態一覧 見てない 見る予定
今見てる もう見た スパンA スパンB スパンC スパンD T T T T T [4]*T [4]*T
実験: Green Teaって ホントに速いの?
効きそうなパターンを作成してみた
やってること 100万件の slice s □□□...
やってること s □□□... T a:□ b:□
やってること s □□□... T a:□ b:□ int □
やってること s □□□... T a:□ b:□ int □ まだsは 使う状態で
GC
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b これまでなら
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b Green Teaなら
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b
T T T T []*T スタック var s *[]T スパン
(T 用) スパン (int 用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b
T T T T []*T スパン (T 用) スパン (int
用) スパン ([]*T 用) T T.b T.b T.b T.b T.b T.b T.b スタック var s *[]T こうなって欲しい (実際に確かめてはいません)
こんな感じで実行 (最適化は切った)
結果
結果 5回とも ちゃんと 速い
まとめ • Green Teaはスパン単位のスキャンで局所性をup • とてもシンプル、だけど一部のケースで強力 ◦ OSの特性をよく活かす方向性 Go 1.26から
ガベージコレクションが 速くなります。
ありがとう ございました Green Tea、試してみてね!