Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Introducción a la minería de datos con R y WEKA

Introducción a la minería de datos con R y WEKA

Esta presentación es una introducción a los conceptos básicos de la minería de datos, describiendo los pasos fundamentales del proceso y listando una serie de elementos fundamentales a través de ejemplos prácticos de varios dominios de aplicación, como el financiero, el de gestión de recursos empresariales, el análisis de imágenes o el agrupamiento temático de noticias periodísticas. Para ello, hará uso de múltiples herramientas como R, Rapid Miner, y WEKA.

* Evento: http://is.gd/chBFi6
* Vídeo: http://www.youtube.com/watch?v=f1hO9ixs-pE
* Repositorio GitHub: https://github.com/gsantosgo/RStats/tree/master/MadridJUG-DataMining

MadridJUG

May 09, 2013
Tweet

More Decks by MadridJUG

Other Decks in Programming

Transcript

  1. IT IT IT IT [ [ [ [1 1 1

    1] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Madrid JUG Madrid JUG Madrid JUG Madrid JUG - -- - Minería de Datos sobre Weka (Data Mining) Minería de Datos sobre Weka (Data Mining) Minería de Datos sobre Weka (Data Mining) Minería de Datos sobre Weka (Data Mining) 9 de Mayo 2013 Jose María Gómez Hidalgo (@jmgomez) Guillermo Santos García (@gsantosgo) DATA MINING
  2. IT IT IT IT [ [ [ [2 2 2

    2] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology INDEX INDEX INDEX INDEX Madrid JUG - Minería de Datos sobre Weka (Data Mining) ............................................................................................... 1 INDEX ...................................................................................................................................................................................... 2 1. Artificial Intelligence. Conceptual Map ............................................................................................................................ 4 1.1 Knowledge Based System vs. Machine Learning System ....................................................................................... 5 2. Data Mining Process ......................................................................................................................................................... 6 2.1 Machine Learning ......................................................................................................................................................... 7 2.1.1 Supervised Machine Learning................................................................................................................................... 7 2.1.2 Unsupervised Machine Learning ............................................................................................................................ 8 2.1.3 The Top Ten Algorithms in Data Mining ................................................................................................................. 9 3. Tools ................................................................................................................................................................................... 10 3.1 WEKA (Waikato Environment for Knowledge Analysis) ................................................................................... 10 3.2 R (#RStats) ........................................................................................................................................................... 10 3.3 RapidMiner............................................................................................................................................................. 11 3.4 KNIME Desktop ...................................................................................................................................................... 11 3.5 Orange ................................................................................................................................................................... 12 3.6 Polls ....................................................................................................................................................................... 13 3.6.1 What programming/statistics languages you used for analytics / data mining in the past 12 months? [579 voters] (Aug 2012) ............................................................................................................................................. 13 3.6.2 What Analytics, Data mining, Big Data software you used in the past 12 months for a real project? (May 2012) .................................................................................................................................................................. 13 4. Examples ............................................................................................................................................................................ 15 4.1 Predicting Price House ........................................................................................................................................ 15 4.2 Lending Club ........................................................................................................................................................ 16 4.3 Spam or Ham Email ............................................................................................................................................. 17 4.4 Handwritten Digit Recognition .......................................................................................................................... 18
  3. IT IT IT IT [ [ [ [3 3 3

    3] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4.5 Human Activity Recognition using Smartphones ............................................................................................ 19 4.6 Inventory ............................................................................................................................................................. 20 4.7 Image Classification ............................................................................................................................................ 21 4.8 Clustering ............................................................................................................................................................ 22 5. Supervised Machine Learning ........................................................................................................................................ 23 6. Evaluation ......................................................................................................................................................................... 24 6.1 Random Subsampling .............................................................................................................................................. 24 6.2 Cross Validation (K-FOLD) ....................................................................................................................................... 24 6.3 Confusion Matrix ...................................................................................................................................................... 25 A.1. ¿What is a DATASET? .................................................................................................................................................... 26 A.2 Types of variables .......................................................................................................................................................... 26
  4. IT IT IT IT [ [ [ [4 4 4

    4] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 1. 1. 1. 1. Artificial Intelligence. Artificial Intelligence. Artificial Intelligence. Artificial Intelligence. Conceptual Conceptual Conceptual Conceptual Map Map Map Map Link: http://en.wikipedia.org/wiki/Artificial_intelligence DATA MINING. LEARN FROM DATA Artificial Intelligence Problem Solving Search Methods Logic Agents Fuzzy Logic Automatic Classification Information Retrieval Filtering Autromatic Categorization Knowledge Based System Expert System Knowledge representation Data Mining Data Acquisition Machine Learning Supervised Unsupervised Natural Language Processing Statistical NLP Knowlegde Based NLP Robotics
  5. IT IT IT IT [ [ [ [5 5 5

    5] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 1 1 1 1. .. .1 Knowledge Based System vs. Machine Learning System 1 Knowledge Based System vs. Machine Learning System 1 Knowledge Based System vs. Machine Learning System 1 Knowledge Based System vs. Machine Learning System Knowledge Based System (Expert System) Knowledge Based System (Expert System) Knowledge Based System (Expert System) Knowledge Based System (Expert System) - Rules are codified manually (Represent knowledge) - Experts (expert is a person with extensive knowledge about domain). - Cost. Expert Sytems (Credit Expert System) If (Annual Income > 3 * Annual Debt) Then CREDIT = YES Annual Income Annual Income Annual Income Annual Income Annual Debt Annual Debt Annual Debt Annual Debt Credit Credit Credit Credit 42.000 € 15.000 € NO 37.000 € 12.000 € SI 80.000 € 40.500 € NO 150.000 € 45.000€ SI Machine Learning System Machine Learning System Machine Learning System Machine Learning System - The manual process is automated. - There aren’t experts. - We take us advantage of data classified manually over years. - Training phase and testing phase. - At first, machine learning systems aren’t as accurate as knowledge based systems, however they’re can evolve and get better through time. (Ex. Spam Detection Spam)
  6. IT IT IT IT [ [ [ [6 6 6

    6] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 2. Data Mining Process 2. Data Mining Process 2. Data Mining Process 2. Data Mining Process KDD (Knowlegde Discovery in Databases) Source: From Data Mining to Knowledge Discovery in Databases (Fayyad. 1997) 1. Selection. The data relevant to select. 2. Preprocessing. 3. Transformation. 4. Data-Mininq. Building Models and Patterns. (MODELLING) 5. Interpretation/Evaluation . Evaluation and Results The term DATA-MINING sometimes refers to the complete process KDD, and sometimes refers only to the phase of MODELLING (4). Here mainly are applied algorithms in the scope of Machine Learning.
  7. IT IT IT IT [ [ [ [7 7 7

    7] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 2. 2. 2. 2.1 Machine Learning 1 Machine Learning 1 Machine Learning 1 Machine Learning Aim. Building or creating programs capable of generaliz generaliz generaliz generalizing ing ing ing behavior behavior behavior behavior from weakly structured information. 2. 2. 2. 2.1.1 1.1 1.1 1.1 Supervised Supervised Supervised Supervised Machine Learning Machine Learning Machine Learning Machine Learning Aim. Predict the value of a variable based on a number of input variables. Regression Problem. Classification Problem. Result: PREDICTIVE MODELS PREDICTIVE MODELS PREDICTIVE MODELS PREDICTIVE MODELS or CLASSIFIERS CLASSIFIERS CLASSIFIERS CLASSIFIERS. DATA PREDICTIVE MODELS DESCRIPTIVE MODELS ATTRIBUTES
  8. IT IT IT IT [ [ [ [8 8 8

    8] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 2. 2. 2. 2.1.2 Unsupervised Machine Learning 1.2 Unsupervised Machine Learning 1.2 Unsupervised Machine Learning 1.2 Unsupervised Machine Learning Aim. Describe patterns or associations among a set of input measures. Patterns or Associations Clustering Result: DESCRIPTIVE DESCRIPTIVE DESCRIPTIVE DESCRIPTIVE MODELS MODELS MODELS MODELS
  9. IT IT IT IT [ [ [ [9 9 9

    9] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 2. 2. 2. 2.1.3 The Top Ten Algorithms in Data Mining 1.3 The Top Ten Algorithms in Data Mining 1.3 The Top Ten Algorithms in Data Mining 1.3 The Top Ten Algorithms in Data Mining IEEE International Conference on Data Mining (ICDM). http://www.cs.uvm.edu/~icdm/ The most influential algorithms used in the Data Mining Community. 1. C 4.5 (Decision Tree). 2. K-Means. 3. Support Vector Machine (SVM). The Best Generalization Ability 4. Apriori. To find frequent itemsets from a transaction dataset and derive association rules 5. EM (Expectation- Maximization) Pattern Recognition 6. PageRank. Link-based ranking algorithm, which also powers the Google search engine. 7. AdaBoost. 8. k-Nearest Neighbors (k-NN) 9. Naïve Bayes. 10. CART. Classification and Regression Trees Source: http://www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf
  10. IT IT IT IT [ [ [ [10 10 10

    10] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 3. Tools 3. Tools 3. Tools 3. Tools 3.1 WEKA (Waikato Environment for Knowledge Analysis) 3.1 WEKA (Waikato Environment for Knowledge Analysis) 3.1 WEKA (Waikato Environment for Knowledge Analysis) 3.1 WEKA (Waikato Environment for Knowledge Analysis) http://www.cs.waikato.ac.nz/ml/weka/ - Data Mining Software in Java. - Implemented in Java - Multi-platform - GUI (Limitations) - GPL License. - University of Waikato, New Zealand 3.2 3.2 3.2 3.2 R R R R (#RStats) (#RStats) (#RStats) (#RStats) http://www.r-project.org/ R is a language and environment for statistical computing and graphics. - S Language (Bell Laboratories) - Implemented in C/C++ - Highly extensible. R can be extended via packages. - R Environment. Uses a command line interface. (NO GUI) - RStudio. Graphical User Interfaces (GUI) - GPL License. - Created by University of Auckland, New Zealand and currently developed R Development Core Team Links: How R grows Books: Machine Learning for Hackers, The Elements of Statistical Learning: Data Mining, Inference and Prediction, OpenIntro Statistics Enterprises: Revolution Analytics, Oracle R Enterprise, … R for Linux R for Linux R for Linux R for Linux R for Mac OSX R for Mac OSX R for Mac OSX R for Mac OSX R for Windows R for Windows R for Windows R for Windows RWeka RWeka RWeka RWeka
  11. IT IT IT IT [ [ [ [11 11 11

    11] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 3.3 3.3 3.3 3.3 R R R RapidMiner apidMiner apidMiner apidMiner http://rapid-i.com/content/view/181/190/lang,en/ - Open-Source Data Mining and Analysis System - Implemented in Java - Multi-platform - Machine Learning library Weka fully integrated. - Access to data sources: Excel, MySQL, Oracle - ETL - Reporting - Data Analysis - AGPL License - Created by Dortmund University of Technology 3.4 KNIME Desktop 3.4 KNIME Desktop 3.4 KNIME Desktop 3.4 KNIME Desktop http://www.knime.org/knime - Data Analytics (Data access, data transformation, predictive analytics, visualization and reporting). - Implemented in Java (Based in Eclipse Platform) - Reporting - ETL - KNIME Extensions. Excel support, R integration, Weka - GPL License - Konstanz University, Germany R R R R Extension for RapidMiner Extension for RapidMiner Extension for RapidMiner Extension for RapidMiner R Extension for Knime R Extension for Knime R Extension for Knime R Extension for Knime
  12. IT IT IT IT [ [ [ [12 12 12

    12] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 3.5 Orange 3.5 Orange 3.5 Orange 3.5 Orange http://orange.biolab.si/ - A component-based data mining and machine learning software suite - A visual programming front-end for explorative data analysis and visualization - Multi-platform. - Python - GPL License - University of Ljubljana, Slovenia
  13. IT IT IT IT [ [ [ [13 13 13

    13] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 3.6 Polls 3.6 Polls 3.6 Polls 3.6 Polls 3.6.1 3.6.1 3.6.1 3.6.1 What programming/statistics languages you used for analytics / data mining in the past 12 What programming/statistics languages you used for analytics / data mining in the past 12 What programming/statistics languages you used for analytics / data mining in the past 12 What programming/statistics languages you used for analytics / data mining in the past 12 months? [579 voters] months? [579 voters] months? [579 voters] months? [579 voters] (Aug 2012) (Aug 2012) (Aug 2012) (Aug 2012) Source: http://www.kdnuggets.com/polls/2012/analytics-data-mining-programming-languages.html 3.6.2 3.6.2 3.6.2 3.6.2 What Analytics, Data mining, Big Data software you used in t What Analytics, Data mining, Big Data software you used in t What Analytics, Data mining, Big Data software you used in t What Analytics, Data mining, Big Data software you used in the past 12 months for a real he past 12 months for a real he past 12 months for a real he past 12 months for a real project? project? project? project? (May 2012) (May 2012) (May 2012) (May 2012)
  14. IT IT IT IT [ [ [ [14 14 14

    14] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Source: http:/www.kdnuggets.com/polls/2012/analytics-data-mining-big-data-software.html
  15. IT IT IT IT [ [ [ [15 15 15

    15] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4 4 4 4. . . . Examples Examples Examples Examples 4 4 4 4.1 Predicting Price House .1 Predicting Price House .1 Predicting Price House .1 Predicting Price House Size Size Size Size Price (K) Price (K) Price (K) Price (K) 80 70 90 83 100 74 110 93 140 89 140 58 150 85 160 114 180 95 200 100 240 138 250 111 270 124 320 161 350 172 Link: https://github.com/gsantosgo/RStats/blob/master/MadridJUG-DataMining/predictHousePrice.md Regression Problem Regression Problem Regression Problem Regression Problem
  16. IT IT IT IT [ [ [ [16 16 16

    16] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4 4 4 4.2 Lending Club .2 Lending Club .2 Lending Club .2 Lending Club Peer to peer lending company. What are the variables associated with the interest rate of a loan? Multivariate Links: http://www.lendingclub.com/ http://en.wikipedia.org/wiki/Lending_Club https://github.com/gsantosgo/RStats/blob/master/MadridJUG-DataMining/loansLendingClub.md Regression Problem Regression Problem Regression Problem Regression Problem
  17. IT IT IT IT [ [ [ [17 17 17

    17] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4 4 4 4.3 .3 .3 .3 Spam or Spam or Spam or Spam or Ham Ham Ham Ham Email Email Email Email Links: https://github.com/gsantosgo/RStats/blob/master/MadridJUG-DataMining/spam.md Classification Problem Classification Problem Classification Problem Classification Problem
  18. IT IT IT IT [ [ [ [18 18 18

    18] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4 4 4 4.4 .4 .4 .4 Handwritten Handwritten Handwritten Handwritten Digit Recognition Digit Recognition Digit Recognition Digit Recognition Identification the numbers in a handwritten ZIP code, from a digitized image. 001 002 003 004 ... 015 016 017 018 019 020 ... 031 032 033 034 035 036 ... 037 038 | | | | ... | | 209 210 211 212 ... 223 224 225 226 227 228 ... 239 240 241 242 243 244 ... 255 256 Each image is a 16 x 16 (256) 8-bit grayscale representation of a handwritten digit http://www.kaggle.com/c/digit-recognizer Link: https://github.com/gsantosgo/RStats/blob/master/MadridJUG-DataMining/handwritten.md 16x16 Classification Problem Classification Problem Classification Problem Classification Problem
  19. IT IT IT IT [ [ [ [19 19 19

    19] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4 4 4 4.5 .5 .5 .5 Human Activity R Human Activity R Human Activity R Human Activity Recognition using Smartphones ecognition using Smartphones ecognition using Smartphones ecognition using Smartphones We used data obtained from accelerometer and gyroscope sensor signals of the smartphones 3-axial linear acceleration 3-axial angular velocity We can monitor acceleration, positions, rotation and angular motion. Laying, Sitting, Standing, Walk, WalkDown, WalkUp
  20. IT IT IT IT [ [ [ [20 20 20

    20] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology DataSet: http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones Source: Activity Recognition using Cell Phone Accelerometers http://www.cis.fordham.edu/wisdm/public_files/sensorKDD-2010.pdf Link: https://github.com/gsantosgo/RStats/blob/master/MadridJUG-DataMining/handwritten.md 4 4 4 4.6 .6 .6 .6 Inventory Inventory Inventory Inventory A large inventory of identical items. You want to predict how many of these items will sell over the next 3 months. Classification Problem Classification Problem Classification Problem Classification Problem Regression Problem Regression Problem Regression Problem Regression Problem
  21. IT IT IT IT [ [ [ [21 21 21

    21] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4.7 4.7 4.7 4.7 Image Classification Image Classification Image Classification Image Classification Computer Vision (C.V.) Haralick texture features. Haralick described 14 statistics that can be calculated from the co-occurrence matrix with the intent of describing the texture of the image: - Angular Second Moment - Constrast - Correlation .. Source: https://github.com/gsantosgo/RStats/tree/master/MadridJUG-DataMining/data/faces.arff Alessandra Ambrosio Jessica Alba Megan Fox Links: http://murphylab.web.cmu.edu/publications/boland/boland_node26.html Classification Problem Classification Problem Classification Problem Classification Problem
  22. IT IT IT IT [ [ [ [22 22 22

    22] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 4.8 4.8 4.8 4.8 Clustering Clustering Clustering Clustering Google News News Clustering Source: http://news.google.es/ Clustering Problem Clustering Problem Clustering Problem Clustering Problem
  23. IT IT IT IT [ [ [ [23 23 23

    23] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 5. Supervised Machine Learning 5. Supervised Machine Learning 5. Supervised Machine Learning 5. Supervised Machine Learning Guide for Supervised Machine Learning Training Phase Testing Phase Training DataSet (Colección de Entrenamiento) Attributes Selection and Extraction (Selección y Extracción de Atributos) Filtered DataSet (Colección filtrada) Learning or Training (Entrenamiento o Aprendizaje) Predictive Model or Classifier (Modelo Predictivo o Clasificador) Testing DataSet (Colección de Datos Reales) Filtering Attributes (Filtrado de Atributos) Filtered DataSet (Colección filtrada) Classification (Clasificación) Classified Data (Datos Clasificados)
  24. IT IT IT IT [ [ [ [24 24 24

    24] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology 6 6 6 6. Evaluation . Evaluation . Evaluation . Evaluation STATE OF ART STATE OF ART STATE OF ART STATE OF ART 6 6 6 6.1 Random Subsampling .1 Random Subsampling .1 Random Subsampling .1 Random Subsampling 1. Use the training set. 2. Split it into training set (66.66 %) and testing set (33.33%). (RANDOM) 3. Build a model on the training set. 4. Evaluate on the test set. 6 6 6 6.2 Cross Validation (K .2 Cross Validation (K .2 Cross Validation (K .2 Cross Validation (K- -- -FOLD) FOLD) FOLD) FOLD) 1. Use the training set. 2. Split it into training/test sets. 3. Build a model on the training set 4. Evaluate on the test set. 5. Repeat and average the estimated Never Overlap! K-FOLD K = 1 K = 2 ……. K = 10 = 1 Test Data Test Data Test Data Training Data Training Data Training Data Tr. Data Test Training Data Test Data Test Data Test Data Test Data Test Data Test Training Data Test Data Test Data Test Data Test Data Test Data
  25. IT IT IT IT [ [ [ [25 25 25

    25] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Link: https://es.wikipedia.org/wiki/Validaci%C3%B3n_cruzada 6 6 6 6.3 Confusion Matrix .3 Confusion Matrix .3 Confusion Matrix .3 Confusion Matrix - Accuracy (Precisión o Efectividad) . The rate of correct predictions - Error rate. The rate of incorrect predictions. - Performance (Eficiencia). The algorithm is quick or nor in the training phase or in the testing phase. Actual/Real Class Actual/Real Class Actual/Real Class Actual/Real Class Predicted Class Predicted Class Predicted Class Predicted Class Total Total Total Total Yes No Yes (1) Yes (1) Yes (1) Yes (1) True Positive (TP) False Negative (FN) Total Positive Real (TPR) No (0) No (0) No (0) No (0) False Positive (FP) True Negative (TN) Total Negative Real (TNR) Total Total Total Total Total Positive Predicted (TPP) Total Negative Predicted (TNP) Total Link: http://en.wikipedia.org/wiki/Confusion_matrix
  26. IT IT IT IT [ [ [ [26 26 26

    26] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology A.1 A.1 A.1 A.1. . . . ¿What is a DATASET? ¿What is a DATASET? ¿What is a DATASET? ¿What is a DATASET? Example: Dataset email50 Row represents a case case case case, a unit of observation unit of observation unit of observation unit of observation, an observational unit observational unit observational unit observational unit, an instance instance instance instance. OBSERVATIONS. OBSERVATIONS. OBSERVATIONS. OBSERVATIONS. EXAMPLE OR EXEMPLARY EXAMPLE OR EXEMPLARY EXAMPLE OR EXEMPLARY EXAMPLE OR EXEMPLARY. . . . Column represents an attribute attribute attribute attribute, a variable variable variable variable, a feature feature feature feature (represent characteristics). Special column. the class the class the class the class, the class label the class label the class label the class label ( two values or multi-valued) For example: The email 4, which is not spam, contains 2454 characters, 61 line breaks, is written in Text format (0=text, 1=html), and contains only small numbers. Variable Description spam Specifies whether the message was spam num_char The number of characters in the email line_breaks The number of line breaks in the email (not including text wrapping) Format Indicates if the email contained special formatting, such as bolding, tables or links, which would indicate the message is in HTML format Number Indicates whether the email contained no number, a small number (under 1 million) or a large number Dataset Dataset Dataset Dataset represents a data matrix data matrix data matrix data matrix, data frame data frame data frame data frame. Each row of a data matrix corresponds to unique case (example), and each column corresponds to a variable. A.2 A.2 A.2 A.2 Types of variables Types of variables Types of variables Types of variables
  27. IT IT IT IT [ [ [ [27 27 27

    27] ] ] ] @gsantosgo @gsantosgo @gsantosgo @gsantosgo Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology Information Tecnology num_char and line_breaks CUANTITATIVE, NUMERICAL AND CONTINOUS VARIABLES. spam CUANTITATIVE, NUMERICAL AND DISCRETE VARIABLE. number indicates whether the email contained no number, a small number (under 1 million) or a large number. It takes values none, small and big. The different levels have a natural ordering. CUALITATIVE, CATEGORICAL VARIABLES AND ORDINAL VARIABLE. Variables Numerical Continuous Discretes Categorical Regular Categorical Ordinal