Chen, D. Gao, J. Lee, J. L. Prince, and A. Carass, “Validating uncertainty in medical image translation,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020, pp. 95–98. • T. Nair, D. Precup, D. L. Arnold, and T. Arbel, “Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation,” Medical image analysis, vol. 59, p. 101557, 2020. • Kendall, Alex, Vijay Badrinarayanan, and Roberto Cipolla. "Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding." arXiv preprint arXiv:1511.02680 (2015). • Sedlmeier, Andreas, et al. "Uncertainty-based out-of-distribution classification in deep reinforcement learning." arXiv preprint arXiv:2001.00496 (2019). • Ruβwurm, Marc, et al. "Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models." IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE. • J. Gawlikowski, S. Saha, A. Kruspe, and X. X. Zhu, “Out-of- distribution detection in satellite image classification,” in RobustML workshop at ICLR 2021. ICRL, 2021, pp. 1–5. • J. Zeng, A. Lesnikowski, and J. M. Alvarez, “The relevance of bayesian layer positioning to model uncertainty in deep bayesian active learning,” arXiv preprint arXiv:1811.12535, 2018. • Baier, Lucas, et al. "Detecting Concept Drift With Neural Network Model Uncertainty." arXiv preprint arXiv:2107.01873 (2021). 51