Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習によるマーケット健全化 Mercari ML Ops Night #1

機械学習によるマーケット健全化 Mercari ML Ops Night #1

Ryusuke Chiba

May 24, 2018
Tweet

More Decks by Ryusuke Chiba

Other Decks in Technology

Transcript

  1. 自己紹介 • 2013年 新卒 • GREE News の開発 • 消滅都市の開発

    • 大学院受験をして受かったので退職 筑波大学 (学部) 筑波大学 (院) メルカリ グリー 2013 2015 2017
  2. 自己紹介 • 2回目の新卒(中古の新卒) • Search チーム (2017.04 - 2017.12) ◦

    クエリパラメータ最適化の仕組み (JP) ◦ 近所検索 (US) • 数学部 部長 ◦ 線形代数ゼミ,アルゴリズムゼミ,数理最適化ゼミ... 筑波大学 (学部) 筑波大学 (院) メルカリ グリー 2013 2015 2017
  3. 自己紹介 • CRE (Customer Reliability Engineering) と SysML ◦ 2018.01

    から ◦ これから話す • 量子アニーリング ◦ D-wave のインターフェイスは数理最適化 筑波大学 (学部) 筑波大学 (院) メルカリ グリー 2013 2015 2017
  4. メルカリについて • ダウンロード数: 世界合計1億800万ダウンロード超 (日本7,100万、米国 3,750万、英国数百万) (2018/3末時点) • 流通額 (GMV):

    日本 938億円 (2018/1-3月四半期累計) • 利用者数 (登録MAU): 1050万人 (2018/3時点) ◦ 登録MAU (Monthly Active User) は1ヶ月に一度以上利用したユーザの数 (「メルカリ アッ テ」「メルカリカウル」「メルカリメゾンズ」「メルチャリ」「teacha」は含まず) • 社員数: 連結 約1000人,メルカリ単体650人  (2018/3末時点)
  5. メルカリについて • カスタマーサポート(CS) ◦ お問い合わせへの対応や,違反出品物の取り締まりなど ◦ 仙台,福岡にも拠点がある • CRE (Customer

    Reliability Engineering) ◦ 技術を駆使して,お客さまに安心して利用してもらえるサービス にしたい ▪ CS のオペレーション効率化
  6. 商品監視 安心安全なマーケットプレイスを維持するために,出品が禁止されているもの https://www.mercari.com/jp/help_center/getting_started/prohibited_items • 偽ブランド品 • 盗難品 • 18禁、アダルト、児童ポルノ関連 •

    現金、金券類、カード類 • ゲームアカウントやゲーム内の通貨 • メルカリ事務局で不適切と判断されるもの • キーワード羅列 • etc...
  7. 商品監視 いま いくつかの既存モデルを,あたらしい ML Platform 上の商品監視サービス Lovemachine に移植中 それによって得られる恩恵は •

    メルカリ API, CS Tool 側の共通処理 • コード品質の向上 • 再学習の仕組み • Blue-Green deploy • リソース管理 ML Platform Lovemachine
  8. 商品監視 いま 移植作業が大変だった • Train code がない • local でしか動かない状態の

    Jupyter notebook • 身元不明の BigQuery table を読んでいる • 身元不明の CSV を読んでいる • DRY でない • 線形代数の効率的な演算が使えていない(for 文がある) • Evaluation を独立して実行できるようになっていない 恩恵: コード品質の向上
  9. 商品監視 いま ML による 自動検知 CS メンバーの確認 (ラベルづけ) 教師データに CS

    業務のフィードバックが得られる 恩恵: 再学習の仕組み
  10. 機械学習基盤 これから 1. 全ての移植作業をやるわけにはいかない 2. 機械学習基盤の機能を充実させたい • 社内 AutoML を作りたい?

    i. Feature Extraction? ii. Black Box Optimization? 3. SysML がスキルセットの差を埋めたい • データサイエンティスト ⇔ SRE • データサイエンティスト ⇔ バックエンドエンジニア