Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Viterbiのアルゴリズム /viterbi-algorithm
Search
Miyakawa Taku
December 11, 2017
Technology
0
250
Viterbiのアルゴリズム /viterbi-algorithm
This presentation is CC BY 3.0 License
Miyakawa Taku
December 11, 2017
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.2k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5k
ミニバッチサイズと学習率の関係 /small-batch-learning
miyakawataku
0
2k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
330
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
150
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
miyakawataku
8
3.1k
Other Decks in Technology
See All in Technology
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
310
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
460
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
170
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
13
3.7k
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
260
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
330
How to be an AWS Community Builder | 君もAWS Community Builderになろう!〜2024 冬 CB募集直前対策編?!〜
coosuke
PRO
2
2.8k
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
260
なぜCodeceptJSを選んだか
goataka
0
160
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
生成AIをより賢く エンジニアのための RAG入門 - Oracle AI Jam Session #20
kutsushitaneko
4
220
C++26 エラー性動作
faithandbrave
2
730
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
YesSQL, Process and Tooling at Scale
rocio
169
14k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
Done Done
chrislema
181
16k
Writing Fast Ruby
sferik
628
61k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
Making the Leap to Tech Lead
cromwellryan
133
9k
Transcript
グラフアルゴリズム番外編: MecabとViterbiのアルゴリズム 宮川 拓
あらまし MecabはViterbiのアルゴリズムを使って、 最適な形態素列を探している http://taku910.github.io/mecab/ 2/23
問題設定 3/23
問題設定 前提 隠れマルコフモデルのパラメータ (初期状態確率、遷移確率、出力確率) が既知 観測値の系列が既知
問題 もっとも尤もらしい状態の系列は? 4/23
例 場所中のMT君は、尾上部屋の里山さんの 勝敗しだいでその日の機嫌が決まる 里山さんの勝ち、負けの初期状態確率、 遷移確率は分かっている 先場所中のMT君の機嫌は、彼のTwitter投 稿を見て把握している
先場所の里山さんのもっとも尤もらしい 星取表は? 5/23
初期状態・遷移確率 勝 敗 場所前 .5 .5 .7 .3 .6 .4
6/23
出力確率 勝 敗 上機嫌 平静 不機嫌 .6 .1 .1 .8
.3 .1 7/23
観測系列 何日目? 出力 勝負結果 初日 上機嫌 ? 二日目 上機嫌 ?
三日目 平静 ? 四日目 不機嫌 ? 五日目 平静 ? 六日目 上機嫌 ? 千秋楽 不機嫌 ? 8/23
解くべき問題 勝 敗 上機嫌 .5 .5 勝 敗 上機嫌 勝
敗 平静 不機嫌 平静 上機嫌 前 不機嫌 勝 勝 勝 勝 敗 敗 敗 敗 .7 .3 .6 .4 勝敗を結ぶパスのうち、もっとも尤もらしい パスを選ぶ .1 .8 9/23
解法の考え方 10/23
解法の考え方 1. 千秋楽は勝敗どっちが尤もらしいか考える 千秋楽の勝・敗それぞれに至るもっと も尤もらしい系列と、その確率が必要 2. 千秋楽の勝・敗それぞれに至るもっとも尤 もらしい系列と、その確率を考える
六日目の勝・敗それぞれに至るもっと も尤もらしい系列と、その確率が必要 3. 以下同様 11/23
千秋楽は勝敗どっち? 勝 敗 上機嫌 .5 .5 勝 敗 上機嫌 勝
敗 平静 不機嫌 平静 上機嫌 前 不機嫌 勝 勝 勝 勝 敗 敗 敗 敗 .7 .3 .6 .4 .1 .8 (仮定) 勝敗勝敗 勝敗勝 六日目までの機嫌との同時確率=0.06 (仮定) 敗勝敗勝敗勝敗 六日目までの機嫌との同時確率=0.01 千秋楽の機嫌との同時確率を考える 千秋楽勝ち: 0.06*0.1 = 0.006 千秋楽敗け: 0.01*0.8 = 0.008 → 尤もらしい 12/23
千秋楽敗戦に至る最尤の系列は? 勝 敗 上機嫌 .5 .5 勝 敗 上機嫌 勝
敗 平静 不機嫌 平静 上機嫌 前 勝 勝 勝 敗 敗 敗 敗 .7 .3 .6 .4 (仮定) 敗勝 敗 勝 敗勝 五日目までの機嫌との同時確率=0.2 (仮定) 勝敗勝敗勝敗 五日目までの機嫌との同時確率=0.4 .1 .6 .6 .3 六日目の機嫌・千秋楽敗戦との同時確率を考える 六日目勝ち: 0.2*0.6*0.3 = 0.036 → 採用 六日目敗け: 0.4*0.1*0.6 = 0.024 13/23
整理 その日の敗戦(勝利)にいたるもっとも尤も らしい系列とその確率を求めるには、 前日の勝利・敗戦にいたるもっとも尤もらし い系列と、その確率が分かれれば良い ↑に対しては動的計画法が有効 問題は部分問題の組み合わせで表せる
問題ツリーの部分木には重複がある 「五日目勝ちにいたるもっとも尤もらし い勝敗の系列」は、六日目勝利・敗戦を 考える場合両方で使われる 14/23
動的計画法の具体策 トップダウン+メモ化 大きな部分問題から、小さな部分問題を 再帰的呼び出しで解く 重複する部分問題の結果はキャッシュし て再利用する
ボトムダウン → Viterbiはこっち 小さな部分問題から大きな部分問題へと 順番に問いていく 15/23
Viterbiのアルゴリズム 16/23
Viterbi 勝 敗 .5 .5 前 初日勝利・敗戦にいたるもっとも尤もらしい 系列とその確率は自明 ‹ 勝›,
確率=0.5 ‹ 敗›, 確率=0.5 17/23
Viterbi 上機嫌 勝 前 .7 .4 ‹勝, 勝›: 0.5*0.6*0.7=0.21 →
採用 ‹敗, 勝›: 0.5*0.1*0.4=0.02 .1 .6 勝 敗 0.5 0.5 18/23
Viterbi 勝 敗 上機嫌 敗 前 .3 .6 ‹勝, 敗›:
0.5*0.6*0.3=0.09 → 採用 ‹敗, 敗›: 0.5*0.1*0.6=0.03 .1 .6 0.5 0.5 19/23
Viterbi 勝 敗 上機嫌 敗 前 ‹勝, 勝, 勝›: 0.21*0.6*0.7=0.0882
→ 採用 ‹勝, 敗, 勝›: 0.09*0.1*0.4=0.0036 勝 上機嫌 0.21 勝 0.09 20/23
Viterbi 勝 敗 上機嫌 敗 前 ‹勝, 勝, 敗›: 0.21*0.6*0.3=0.0378
→ 採用 ‹勝, 敗, 敗›: 0.09*0.1*0.6=0.0054 勝 上機嫌 0.21 敗 0.09 21/23
22/23 トリック ステップが進むと、系列の確率が小さくな り、精度が落ちてしまう(アンダーフ ロー) 対策: 確率の対数を持つ
Mecabにおける応用 https://www.slideshare.net/secret/9MHZC7bl dJC8Z2 23/23