Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
Search
Miyakawa Taku
December 27, 2017
Programming
8
3.2k
Strassenのアルゴリズムによる 行列積の計算 /strassen-algorithm
このスライドの著者は宮川拓です。
CC BY 3.0 Licenseの元に利用を許諾します。
Miyakawa Taku
December 27, 2017
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.3k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2.1k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5.2k
ミニバッチサイズと学習率の関係 /small-batch-learning
miyakawataku
0
2.1k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
350
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
170
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
270
Other Decks in Programming
See All in Programming
Agentic Applications with Symfony
el_stoffel
2
310
一緒に働きたくなるプログラマの思想 #QiitaConference
mu_zaru
30
6.5k
Module Boundaries and Architecture with Forensic Analysis @NxSummit Amsterdam 2025
manfredsteyer
PRO
0
100
Amazon CloudWatchの地味だけど強力な機能紹介!
itotsum
0
170
複雑なフォームの jotai 設計 / Designing jotai(state) for Complex Forms #layerx_frontend
izumin5210
4
1k
Defying Front-End Inertia: Inertia.js on Rails
skryukov
0
490
AI Agents with JavaScript
slobodan
0
250
AWS で実現する安全な AI エージェントの作り方 〜 Bedrock Engineer の実装例を添えて 〜 / how-to-build-secure-ai-agents
gawa
8
830
KawaiiLT 登壇資料 キャリアとモチベーション
hiiragi
0
120
Unlock the Potential of Swift Code Generation
rockname
0
260
サービスレベルを管理してアジャイルを加速しよう!! / slm-accelerate-agility
tomoyakitaura
1
180
大LLM時代にこの先生きのこるには-ITエンジニア編
fumiyakume
7
3k
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Six Lessons from altMBA
skipperchong
27
3.7k
YesSQL, Process and Tooling at Scale
rocio
172
14k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
Fireside Chat
paigeccino
37
3.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Designing for humans not robots
tammielis
252
25k
Music & Morning Musume
bryan
47
6.5k
4 Signs Your Business is Dying
shpigford
183
22k
Git: the NoSQL Database
bkeepers
PRO
430
65k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Transcript
Strassenのアルゴリズムによる 行列積の計算 2017-12-27 ビール&LT大会 ハッシュタグ: #jjug 宮川 拓
@miyakawa_taku JJUG幹事です SI屋で賃労働してます オレオレJVM言語Kinkを作っています https://bitbucket.org/kink/kink
尾上部屋の里山さんのファンです 自己紹介 #jjug 2/19
あらまし 本物のプログラマになりたい! ということで、 『アルゴリズムイントロダクション』 を読み進めています n次正方行列の積が、Θ(3)よりも小さい計 算量で計算できるらしい(§4.2)
びっくり! #jjug 3/19
背景 機械学習の計算は行列計算のかたまり 行列計算が速いと嬉しい #jjug 4/19
まずはふつうに計算 #jjug 5/19
三重ループ = ( ), = ( )をn次の正方行列とする =
∙ の要素は = σ=1 ∙ すなおに三重ループで実装: for i in 1~n: for j in 1~n: c[i, j] = 0 for k in 1~n: c[i, j] += a[i, k] * b[k, j] 3 回繰り返す → 計算量は() #jjug 6/19
準備: 分割統治 #jjug 7/19
分割統治 A, B, Cを縦横半分に分割すると、 = ∙ は次のように書き直せる 11 12 21
22 = 11 12 21 22 ∙ 11 12 21 22 = 11 ∙ 11 + 12 ∙ 21 11 ∙ 12 + 12 ∙ 22 21 ∙ 11 + 22 ∙ 21 21 ∙ 12 + 22 ∙ 22 #jjug 8/19
分割統治 def prod(a, b): if a.order == b.order == 1:
return matrix_1x1(a[0, 0] * b[0, 0]) a11, a12, a21, a22 = partition(a) b11, b12, b21, b22 = partition(b) c11 = prod(a11, b11) + prod(a12, b21) c12 = prod(a11, b12) + prod(a12, b22) c21 = prod(a21, b11) + prod(a22, b21) c22 = prod(a21, b12) + prod(a22, b22) return concat(c11, c12, c21, c22) 計算量はスカラ値の掛け算の回数に比例 n次行列の乗算は 2 次行列の乗算を8回再帰呼び出し #jjug 9/19
分割統治 n: 行列の次数 スカラ値の 掛け算の回数 1 1 2 8 4
64 8 512 16 4,096 2倍 8 = 23 倍 2倍 8 = 23 倍 2倍 8 = 23 倍 計算量はやっぱり() #jjug 10/19
Strassenのアルゴリズム #jjug 11/19
Strassenのアルゴリズム A, Bを分割した上で1 ~7 を次のように置く 1 = 11 (12
− 22 ) 2 = (11 + 12 )22 3 = (21 + 22 )11 4 = 22 21 − 11 5 = (11 + 22 )(11 + 22 ) 6 = 12 − 22 21 + 22 7 = 11 − 21 11 + 12 2 次行列を 計7回乗算 #jjug 12/19
Strassenのアルゴリズム ここで、次が成り立つ 11 = 11 11 + 12 21
= 5 + 4 − 2 + 6 12 = 11 12 + 12 22 = 1 + 2 21 = 21 11 + 22 21 = 3 + 4 22 = 21 12 + 22 22 = 5 + 1 − 3 − 7 Cは1 ~7 の和で表せる 2 次行列の乗算を7回再帰呼び出しすれば良い! #jjug 13/19
Strassenのアルゴリズム Strassen 計算量 n 三重ループ 計算量 1 1 1 7
2 8 49 4 64 343 8 512 2,401 16 4,096 8倍 8倍 8倍 7倍 7倍 7倍 Θ 27 = .… Θ 28 = Θ 3 < #jjug 14/19
実装&計測 #jjug 15/19
実装 https://bitbucket.org/miyakawataku/matrix- multiplication/src/default/matrix.go #jjug 16/19
計測 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000000 100.000000 1,000.000000
10,000.000000 16 64 256 1,024 4,096 実行時間(秒) n (行列の次数) 三重ループ Strassen #jjug 17/19
総括 #jjug 18/19
総括 素敵なアルゴリズムは、nが小さい時には遅い。 そして大抵の場合、nは小さい。 素敵なアルゴリズムの計算量の式には、大きな 定数項が掛かっている。 nが大きくなることが分かっていない限り、素敵 にしてはならない。 ― Rob Pike
“Notes on Programming in C” #jjug 19/19