Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
Search
Miyakawa Taku
December 27, 2017
Programming
8
3.4k
Strassenのアルゴリズムによる 行列積の計算 /strassen-algorithm
このスライドの著者は宮川拓です。
CC BY 3.0 Licenseの元に利用を許諾します。
Miyakawa Taku
December 27, 2017
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.4k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2.2k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5.3k
ミニバッチサイズと学習率の関係 /small-batch-learning
miyakawataku
0
2.2k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
360
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
180
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
290
Other Decks in Programming
See All in Programming
MLH State of the League: 2026 Season
theycallmeswift
0
210
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
13
3.5k
オープンセミナー2025@広島LT技術ブログを続けるには
satoshi256kbyte
0
150
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
1k
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
18
9.6k
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
ECS初心者の仲間 – TUIツール「e1s」の紹介
keidarcy
0
140
複雑なドメインに挑む.pdf
yukisakai1225
4
870
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
360
Portapad紹介プレゼンテーション
gotoumakakeru
1
130
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
1
200
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
0
390
Featured
See All Featured
Being A Developer After 40
akosma
90
590k
Designing Experiences People Love
moore
142
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
YesSQL, Process and Tooling at Scale
rocio
173
14k
GitHub's CSS Performance
jonrohan
1032
460k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Bash Introduction
62gerente
614
210k
How GitHub (no longer) Works
holman
315
140k
The Invisible Side of Design
smashingmag
301
51k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
Strassenのアルゴリズムによる 行列積の計算 2017-12-27 ビール&LT大会 ハッシュタグ: #jjug 宮川 拓
@miyakawa_taku JJUG幹事です SI屋で賃労働してます オレオレJVM言語Kinkを作っています https://bitbucket.org/kink/kink
尾上部屋の里山さんのファンです 自己紹介 #jjug 2/19
あらまし 本物のプログラマになりたい! ということで、 『アルゴリズムイントロダクション』 を読み進めています n次正方行列の積が、Θ(3)よりも小さい計 算量で計算できるらしい(§4.2)
びっくり! #jjug 3/19
背景 機械学習の計算は行列計算のかたまり 行列計算が速いと嬉しい #jjug 4/19
まずはふつうに計算 #jjug 5/19
三重ループ = ( ), = ( )をn次の正方行列とする =
∙ の要素は = σ=1 ∙ すなおに三重ループで実装: for i in 1~n: for j in 1~n: c[i, j] = 0 for k in 1~n: c[i, j] += a[i, k] * b[k, j] 3 回繰り返す → 計算量は() #jjug 6/19
準備: 分割統治 #jjug 7/19
分割統治 A, B, Cを縦横半分に分割すると、 = ∙ は次のように書き直せる 11 12 21
22 = 11 12 21 22 ∙ 11 12 21 22 = 11 ∙ 11 + 12 ∙ 21 11 ∙ 12 + 12 ∙ 22 21 ∙ 11 + 22 ∙ 21 21 ∙ 12 + 22 ∙ 22 #jjug 8/19
分割統治 def prod(a, b): if a.order == b.order == 1:
return matrix_1x1(a[0, 0] * b[0, 0]) a11, a12, a21, a22 = partition(a) b11, b12, b21, b22 = partition(b) c11 = prod(a11, b11) + prod(a12, b21) c12 = prod(a11, b12) + prod(a12, b22) c21 = prod(a21, b11) + prod(a22, b21) c22 = prod(a21, b12) + prod(a22, b22) return concat(c11, c12, c21, c22) 計算量はスカラ値の掛け算の回数に比例 n次行列の乗算は 2 次行列の乗算を8回再帰呼び出し #jjug 9/19
分割統治 n: 行列の次数 スカラ値の 掛け算の回数 1 1 2 8 4
64 8 512 16 4,096 2倍 8 = 23 倍 2倍 8 = 23 倍 2倍 8 = 23 倍 計算量はやっぱり() #jjug 10/19
Strassenのアルゴリズム #jjug 11/19
Strassenのアルゴリズム A, Bを分割した上で1 ~7 を次のように置く 1 = 11 (12
− 22 ) 2 = (11 + 12 )22 3 = (21 + 22 )11 4 = 22 21 − 11 5 = (11 + 22 )(11 + 22 ) 6 = 12 − 22 21 + 22 7 = 11 − 21 11 + 12 2 次行列を 計7回乗算 #jjug 12/19
Strassenのアルゴリズム ここで、次が成り立つ 11 = 11 11 + 12 21
= 5 + 4 − 2 + 6 12 = 11 12 + 12 22 = 1 + 2 21 = 21 11 + 22 21 = 3 + 4 22 = 21 12 + 22 22 = 5 + 1 − 3 − 7 Cは1 ~7 の和で表せる 2 次行列の乗算を7回再帰呼び出しすれば良い! #jjug 13/19
Strassenのアルゴリズム Strassen 計算量 n 三重ループ 計算量 1 1 1 7
2 8 49 4 64 343 8 512 2,401 16 4,096 8倍 8倍 8倍 7倍 7倍 7倍 Θ 27 = .… Θ 28 = Θ 3 < #jjug 14/19
実装&計測 #jjug 15/19
実装 https://bitbucket.org/miyakawataku/matrix- multiplication/src/default/matrix.go #jjug 16/19
計測 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000000 100.000000 1,000.000000
10,000.000000 16 64 256 1,024 4,096 実行時間(秒) n (行列の次数) 三重ループ Strassen #jjug 17/19
総括 #jjug 18/19
総括 素敵なアルゴリズムは、nが小さい時には遅い。 そして大抵の場合、nは小さい。 素敵なアルゴリズムの計算量の式には、大きな 定数項が掛かっている。 nが大きくなることが分かっていない限り、素敵 にしてはならない。 ― Rob Pike
“Notes on Programming in C” #jjug 19/19