Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ミニバッチサイズと学習率の関係 /small-batch-learning
Search
Miyakawa Taku
July 17, 2018
Programming
0
2k
ミニバッチサイズと学習率の関係 /small-batch-learning
Miyakawa Taku
July 17, 2018
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.2k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
1.9k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
4.9k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
330
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
150
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
miyakawataku
8
3k
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
240
Other Decks in Programming
See All in Programming
Universal Linksの実装方法と陥りがちな罠
kaitokudou
1
220
讓數據說話:用 Python、Prometheus 和 Grafana 講故事
eddie
0
350
Sidekiqで実現する 長時間非同期処理の中断と再開 / Pausing and Resuming Long-Running Asynchronous Jobs with Sidekiq
hypermkt
6
2.7k
Server Driven Compose With Firebase
skydoves
0
400
Webの技術スタックで マルチプラットフォームアプリ開発を可能にするElixirDesktopの紹介
thehaigo
2
910
Golang と Erlang
taiyow
8
1.9k
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
1
290
レガシーな Android アプリのリアーキテクチャ戦略
oidy
1
170
デプロイを任されたので、教わった通りにデプロイしたら障害になった件 ~俺のやらかしを越えてゆけ~
techouse
52
32k
Dev ContainersとGitHub Codespacesの素敵な関係
ymd65536
1
130
ECS Service Connectのこれまでのアップデートと今後のRoadmapを見てみる
tkikuc
2
210
go.mod、DockerfileやCI設定に分散しがちなGoのバージョンをまとめて管理する / Go Connect #3
arthur1
10
2.4k
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Designing the Hi-DPI Web
ddemaree
280
34k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
14
1.9k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
7
150
For a Future-Friendly Web
brad_frost
175
9.4k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
4 Signs Your Business is Dying
shpigford
180
21k
Transcript
ミニバッチサイズと学習率の関係 2018-07-17 宮川 拓
動機 ⚫ 確率的勾配降下法(SGD)では、訓練セッ ト全体ではなく、m個のサンプル=ミニ バッチを用いて重みを更新する ⚫ mは、メモリが許す限り大きければ大きい 方がいいのだろう、と勝手に決めつけてい たけど、実はそうでもないらしい 2/15
元ネタ ⚫ Dominic Masters and Carlo Luschi, “Revisiting Small Batch
Training for Deep Neural Networks” ◼ 著者はGraphcoreというML用チップ製造 スタートアップの人たち ◼ ミニバッチサイズと、学習率、モデルの 性能の関係を調べた論文 3/15
先に結論 ⚫ ミニバッチのサイズは小さめの方が良い ◼ テストデータに対する性能が良くなる ◼ 学習が発散しない学習率の幅が広くなる ⚫ ミニバッチのサイズを小さくすると、GPU 等を使った時に計算の並列度が低くなるが、
これは計算を複数のコア、マシンに分散す ることで相殺できるかも 4/15
Background 5/15
この章の概要 ⚫ 小さいミニバッチのほうが優れていそうだ、 ということの理論的根拠を示す 6/15
一般的なSGDのアルゴリズム ⚫ +1 = + η − 1 σ =1
∇ (2, 3) ◼ ただし、η : 学習率 ◼ ∇ : 各featureの傾斜 ◼ : サンプルiに対する損失 ⚫ ここでサンプルごとに ◼ 重みの更新値の期待値は、/に比例 ◼ Cov(重みの更新値)の期待値は、m≪M の時、2/に比例 7/15
和で重みを更新するアルゴリズム ⚫ ここで、(2, 3)に = を代入 ◼ +1 =
+ σ =1 ∇ (5) ◼ つまり、損失の平均ではなく、損失の和を 使って重みを更新するように変形した ◼ を「ベース学習率」と呼んでいる ⚫ ここでサンプルごとに ◼ 重みの更新値の期待値は に比例 ◼ Cov(重みの更新値)の期待値はm≪Mの時、 2 ∙ に比例 8/15
バッチサイズ変更の意味 ⚫ (5)において、n回の重み更新は次式のよう に表される ◼ + = − σ
=0 −1 σ =1 ∇ + + (7) ⚫ ここで、バッチサイズをn倍することは、 次式による重み更新を行うことを意味する ◼ +1 = − σ =0 ∇ (8) ⚫ (8)は、勾配の更新頻度を少なくした、(7) の近似計算とみなせる 9/15
バッチサイズ変更の意味 ⚫ 重みの更新に損失の平均を使う式(2, 3)の 観点では、mが大きい方がよく見える。訓 練データ全体を使う場合(m=M)のより 正確な近似になるから ⚫ しかし、サンプルごとの重み更新値の期待 値を一定化する観点からは、逆に見える。
⚫ また、Cov(重みの更新値)は 2 ∙ に比例す るので、mが小さければより大きなベース 学習率が許容できる 10/15
バッチサイズ変更の意味? ⚫ 「バッチサイズが小さいと、複数エポック 回した時に、ミニバッチのバリエーション が増えるからいいんじゃないか」みたいな 議論をどこかで読んだけど、本論文では触 れられてなかった 11/15
Batch Normalizationに関する議論 ⚫ 省略! 12/15
実験 13/15
実験 ベ ー ス 学 習 率 が 大 き
い 場 合 、 バ ッ チ サ イ ズ を 小 さ く 保 つ 必 要 が あ る バ ッ チ サ イ ズ が 小 さ け れ ば 、 大 き な ベ ー ス 学 習 率 が 許 容 で き る データセット、ネットワーク、BN有無、 Augmentation有無などによらず、傾向は同じ 14/15
実験結果 最良の結果はm=2~32の範囲に集中 実験ごとに、どの(ベース学習率xバッチサイズ)で 良い結果が得られたか。縦棒の太いところが良い結果 15/15