Upgrade to Pro — share decks privately, control downloads, hide ads and more …

統計的学習理論の基礎 II

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

統計的学習理論の基礎 II

Avatar for Masanari Kimura

Masanari Kimura

March 05, 2021
Tweet

More Decks by Masanari Kimura

Other Decks in Research

Transcript

  1. CompML VC-Dimension ఆٛ 1.ʢVC-࣍ݩʣՄଌۭؒ ͷ͋Δू߹Λ ͱ͢Δɽશͯͷ෦෼ू߹ ʹ͍ͭͯɼ ͱͳΔΑ͏ͳ ͕ଘࡏ͢Δͱ͖ɼू߹ ͸

    Ͱ෼཭͞ ΕΔͱ͍͏ɽ ͷVapnik-Chervonenkis࣍ݩ ͸ɼ ʹΑͬͯ෼཭͞ΕΔू ߹ͷج਺ͷ࠷େ஋ʹ౳͍͠ɽ (𝑋, 𝑆) 𝒜 ⊂ 𝑆 𝐵 ⊂ 𝑆 𝑆 ∩ 𝐴 = 𝐵 𝐴 ∈ 𝒜 𝑆 𝒜 𝒜 𝑉𝐶𝑑𝑖𝑚(𝒜) 𝒜 Photo by Wikipedia.
  2. CompML The Pseudo-Dimension ఆٛ2.ʢ -࣍ݩʣՄଌۭؒ ͷ্ͷՄଌؔ਺ͷू߹Λ ͱ͢Δɽ ू߹ ͸ҎԼ͕੒Γཱͭͱ͖ -shatteredͰ͋Δͱ͍͏ɿ

    ೚ҙͷ2஋ϕΫτϧ ͱͦΕʹରԠ͢Δؔ਺ ʹ͍ͭͯɼ ্هͷ৚݅ΛHeavisideؔ਺ Ͱॻ͖׵͑Δͱ ؔ਺Ϋϥε ͷ -࣍ݩ͸ ʹΑͬͯ -shatteredͱͳΔΑ͏ͳू߹ͷج਺ͷ࠷େ஋Ͱఆٛ͞Εɼ ͱॻ͔ΕΔɽ 𝑃 (𝑋, 𝑆 ) ℱ ⊂ [0,𝑅] 𝑋 𝑆 = {𝑥1 , …, 𝑥𝑛} ⊂ 𝑋 𝑃 𝑒 ∈ {0,1}𝑛 𝑓𝑒 ∈ ℱ { 𝑓𝑒(𝑥𝑖) ≥ 𝑐𝑖 𝑖𝑓 𝑒𝑖 = 1, 𝑓𝑒(𝑥𝑖) < 𝑐𝑖 𝑖𝑓 𝑒𝑖 = 0. 𝜂(𝑧) 𝜂[𝑓𝑒(𝑥𝑖) − 𝑐𝑖] = 𝑒𝑖 , ∀𝑖, ∀𝑒 . ℱ 𝑃 ℱ 𝑃 𝑃𝑑𝑖𝑚(ℱ)
  3. CompML Illustration of P-Shattering 𝑥1 𝑥2 𝑥3 𝑓 [01…1] 𝑓

    [00…1] 𝑓 [11…0] 𝑐1 𝑐2 𝑐3 { 𝑓𝑒(𝑥𝑖) ≥ 𝑐𝑖 𝑖𝑓 𝑒𝑖 = 1, 𝑓𝑒(𝑥𝑖) < 𝑐𝑖 𝑖𝑓 𝑒𝑖 = 0.
  4. CompML VC࣍ݩͱ -࣍ݩͷಉ஋৚݅ 𝑃 ิ୊1ɽ ʹ͍ͭͯɼҎԼͷΑ͏ʹ Λఆٛ͢Δɿ ͜ͷͱ͖ɼ ℱ =

    {𝑓:𝑋 → [0,𝑅]} ¯ ℱ ¯ ℱ = { ¯ 𝑓(𝑥, 𝑐) = 𝜂[𝑓(𝑥) − 𝑐] :𝑓 ∈ ℱ} . 𝑃𝑑𝑖𝑚( ¯ ℱ) = 𝑉𝐶𝑑𝑖𝑚( ¯ ℱ) .
  5. CompML The Fat-Shattering Dimension ఆٛɽʢFat-Shattering࣍ݩʣ Մଌۭؒ ͷ্ͷՄଌؔ਺ͷू߹Λ ͱ͢Δɽू߹ ͸Ҏ Լ͕੒Γཱͭͱ͖෯

    ͓Αͼਫ਼౓ Ͱfat-shatteredͰ͋Δͱ͍͏ɿ ೚ҙͷ2஋ϕΫτϧ ͱͦΕʹରԠ͢Δؔ਺ ʹ͍ͭͯɼ ؔ਺Ϋϥε ͷFat-Shattering࣍ݩ͸ ʹΑͬͯfat-shatteredͱͳΔΑ͏ͳू߹ͷج ਺ͷ࠷େ஋Ͱఆٛ͞Εɼ ͱॻ͔ΕΔɽ (𝑋, 𝑆) ℱ ⊂ [0,𝑅] 𝑋 S = {x1 , …, xn } γ c 𝑒 ∈ {0,1}𝑛 𝑓𝑒 ∈ ℱ { fe (xi ) ≥ ci + γ if ei = 1, fe (xi ) < ci − γ if ei = 0. ℱ ℱ Fdim(ℱ, γ)
  6. CompML LemmaʢSymmetrizationʣ ิ୊ɽ ͱͳΔΑ͏ͳ ʹ͍ͭͯɼ ͕੒Γཱͭɽ͜͜Ͱ ؔ਺ͷظ଴஋ͱܦݧ஋ͷࠩ͸ɼಠཱʹಘΒΕͨೋछྨͷܦݧ஋ͷࠩͰ཈͑ΒΕΔɽ t ≥ 2/m

    t > 0 P( sup f∈ℱ | f − ̂ f | ) ≤ 2P( sup f∈ℱ | ̂ f′ − ̂ f | ≥ t/2) f = 𝔼[ f ] ̂ f = 1 m m ∑ i=1 f(xi , yi ) ̂ f′ = 1 m m ∑ i=1 f(x′ i , y′ i )
  7. CompML ࢀߟจݙ • Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine

    Learning - From Theory to Algorithms.. Cambridge University Press. ISBN: 978-1-10-705713-5 • Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.