Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Arrow C++ Datasets
Search
Kenta Murata
December 11, 2019
Technology
4
1.6k
Apache Arrow C++ Datasets
Introduce Apache Arrow C++ Datasets.
Presented Apache Arrow Tokyo Meetup 2019.
Kenta Murata
December 11, 2019
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
200
HolidayJp.jl を作りました
mrkn
0
200
Calling Julia functions from Streamlit applications
mrkn
1
440
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.2k
Method-based JIT compilation by transpiling to Julia
mrkn
0
7.2k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.7k
RubyData and Rails
mrkn
0
3.1k
Tensor and Arrow
mrkn
0
940
RubyData Current and Future
mrkn
1
3.5k
Other Decks in Technology
See All in Technology
Road to SRE NEXT@仙台 IVRyの組織の形とSLO運用の現状
abnoumaru
0
390
3/26 クラウド食堂LT #2 GenU案件を通して学んだ教訓 登壇資料
ymae
1
210
Go製のマイグレーションツールの git-schemalex の紹介と運用方法
shinnosuke_kishida
1
410
年末調整プロダクトの内部品質改善活動について
kaomi_wombat
0
210
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
19
19k
データベースで見る『家族アルバム みてね』の変遷 / The Evolution of Family Album Through the Lens of Databases
kohbis
2
440
LINE Notify互換のボットを作った話
kenichirokimura
0
180
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
220
Dapr For Java Developers SouJava 25
salaboy
1
130
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.2k
コンソールで学ぶ!AWS CodePipelineの機能とオプション
umekou
2
120
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
20k
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
31
4.8k
4 Signs Your Business is Dying
shpigford
183
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
470
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Writing Fast Ruby
sferik
628
61k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
The Language of Interfaces
destraynor
157
24k
KATA
mclloyd
29
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
620
The Cult of Friendly URLs
andyhume
78
6.3k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Optimising Largest Contentful Paint
csswizardry
35
3.2k
Transcript
Apache Arrow C++ Datasets Kenta Murata Speee, Inc. 2019.12.11 Apache
Arrow Tokyo Meetup 2019
Kenta Murata • Fulltime OSS developer at Speee, Inc. •
CRuby committer (as of 2010.02) • Apache Arrow committer (as of 2019.10) • The 24th place (44 commits) • SparseTensor in Arrow C++ • GLib and Ruby binding, etc.
Apache Arrow C++ ͷߏ Base Datasets Query Engine Data Frame
Apache Arrow C++ Datasets • 1ͭҎ্ͷσʔλιʔεΛ·ͱΊͯ1ͭͷσʔληοτͱ ͯ͠ѻ͏ͨΊͷ API Λఏڙ͢Δ •
༷ʑͳछྨͷσʔλϑΥʔϚοτͷҧ͍Λٵऩ͢Δ • ҟͳΔεΩʔϚͷσʔλιʔεΛ1ͭʹ౷߹Ͱ͖Δ • ෳछྨͷετϨʔδ͔ΒͷσʔλೖྗʹରԠͰ͖Δ • কདྷతʹϑΝΠϧͷॻ͖ग़͠ʹରԠ͢Δ༧ఆ
ෳͷσʔλιʔε͔Β1ͭͷςʔϒϧΛ࡞ΕΔ a.parquet b.parquet Query 1 Query 2 c.csv d.json Record
Batch 1 Record Batch 2 Amazon S3 Amazon Redshift Local File System In-Memory Arrow Table
ϑΝΠϧ͔ΒͷಡΈࠐΈ Discover Scan Filter & Project Collect
ϑΝΠϧ͔ΒͷಡΈࠐΈ • ϑΝΠϧΛεΩϟϯͯ͠ Record Batch Λ࡞Δ • ෳϑΝΠϧΛฒྻεΩϟϯͰ͖Δ • ϑΝΠϧγεςϜ্ͷσΟϨΫτϦ͔Βࢦఆͨ͠ϧʔϧʹج͍ͮͯϑΝΠϧΛൃݟ͢Δ
• ෳͷϑΝΠϧʹׂ͞ΕͨσʔλΛ࠶ߏ͢Δ • σʔλΛෳϑΝΠϧʹׂ͢Δͱ͖ͷεΩʔϚׂͷنଇʹैͬͯॲཧ͢Δ • ݅ࣜͰߦΛϑΟϧλϦϯάͰ͖Δ • ݁ՌΛ࡞ΔͨΊʹඞཁͳΧϥϜͷΈΛಡΈࠐΉ • ϩʔΧϧετϨʔδʹΩϟογϡΛ࡞Δ • ඞཁʹͳΔ·ͰϑΝΠϧΛಡΈࠐ·ͳ͍ (lazy scan)
ϑΝΠϧͷൃݟ • ϕʔεσΟϨΫτϦͷҐஔͱϑΝΠϧϑΥʔϚοτΛࢦఆ ͢ΔͱɺͦͷσΟϨΫτϦҎԼʹ͋ΔରϑΝΠϧΛ͢ ͯϦετΞοϓͯ͘͠ΕΔ • αϒσΟϨΫτϦΛ࠶ؼతʹ୳͢͜ͱՄೳ • ແࢹ͢ΔϑΝΠϧ໊ͷϓϨϑΟοΫεΛࢦఆͰ͖Δ •
ରϑΝΠϧΛͯ͢ಡΈࠐΉͨΊʹඞཁͳϚʔδࡁΈͷ εΩʔϚΛ࡞ͬͯ͘ΕΔ (༧ఆ)
ϑΝΠϧͷൃݟͷྫ /data/.metadata /data/2018/12/JP/Tokyo/001.parquet /data/2018/12/JP/Tokyo/002.parquet /data/2018/12/JP/Osaka/001.parquet /data/2018/12/US/CA/001.parquet /data/2019/01/JP/Tokyo/001.parquet /data/2019/01/JP/Osaka/001.parquet /data/2019/01/US/CA/001.parquet /data/2019/01/US/NY/001.parquet
/tmp/Tokyo.parquet ↓͜ΕΒͷϑΝΠϧ͚ͩϐοΫΞοϓ͍ͨ͠
ϑΝΠϧͷൃݟͷྫ using namespace arrow; using namespace arrow::dataset; fs::Selector selector; selector.base_dir
= “/data”; selector.recursive = true; std::shared_ptr<FileSystemDataSourceDiscovery> discovery; ARROW_OK_AND_ASSIGN( discovery, FileSystemDataSourceDiscovery::Make( fs, selector, std::make_shared<dataset::ParquetFileFormat>(), FileSystemDiscoveryOptions())); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish());
σʔλׂͷنଇΛࢦఆ /data/2018 /data/2018/12 /data/2018/12/JP /data/2018/12/JP/Tokyo/001.parquet auto partition_scheme = schema({field(“year”, int32()),
field(“month”, int32()), field(“country”, utf8()), field(“city”, utf8())}); ASSERT_OK(discovery->SetPartitionScheme(partition_scheme)); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish()); year month country city => {“year": 2018} => {“year”: 2018, “month”: 12} => {“year”: 2018, “month”: 12, “country”: “JP”} => {“year”: 2018, “month”: 12, “country”: “JP”, “city”: “Tokyo”}
ϑΟϧλϦϯά • ݅ࣜΛͬͯߦΛϑΟϧλϦϯάͰ͖Δ • year ͕ 2019 Ͱ sales ͕
100.0 ΑΓେ͖͍ߦ͚ͩΛऔΓ ग़͢߹࣍ͷࣜΛεΩϟφʹࢦఆ͢Δ “year”_ == 2019 && “sales”_ > 100.0 • εΩʔϚׂͷنଇʹैͬͯɺ݅ʹ߹க͠ͳ͍ϑΝΠϧ ͷಡΈࠐΈΛলུ͢Δ
औΓग़͢ΧϥϜͷࢦఆ • ͯ͢ͷΧϥϜΛಡΈࠐ·ͳͯ͘ྑ͍߹ɺϓϩδΣΫ γϣϯ (ࣹӨ) ػೳΛͬͯऔΓग़͢ΧϥϜΛ੍ݶͰ͖Δ • ͜ͷػೳͰಡΈࠐΉΧϥϜΛ੍ݶ͢ΔͱɺෆཁͳΧϥϜͷ σγϦΞϥΠζͱܕม͕লུ͞ΕͯɺϑΝΠϧϑΥʔ ϚοτʹΑͬͯσʔλͷಡΈग़͕͘͠ͳΔ
σʔληοτΛ࡞ͬͯಡΈࠐΜͰ Arrow Table Λ࡞Δ·Ͱͷྫ // σʔληοτͷ࡞ ASSERT_OK_AND_ASSIGN(auto dataset, Dataset::Make({data_source}, discovery->Inspect()));
// εΩϟφϏϧμ ASSERT_OK_AND_ASSIGN(auto scanner_builder, dataset->NewScan()); // ϑΟϧλͷઃఆ auto filter = (“year”_ == 2019 && “sales”_ > 100.0); ASSERT_OK(scanner_builder->Filter(filter)); // ϓϩδΣΫγϣϯͷઃఆ std::vector<std::string> columns{“item_id”, “item_name”, “sales”}; ASSERT_OK(scanner_builder->Project(columns)); // εΩϟφੜ ASSERT_OK_AND_ASSIGN(auto scanner, scanner_builder->Finish(); // σʔλΛಡΈࠐΜͰ Arrow Table Λ࡞Δ (͜͜Ͱ࣮ࡍʹϑΝΠϧ͕ಡΈࠐ·ΕΔ) ASSERT_OK_AND_ASSIGN(auto table, scanner->ToTable());
ෳϑΝΠϧͷฒྻಡΈࠐΈ • ϑΝΠϧ୯ҐͰಡΈࠐΈλεΫ͕࡞ΒΕɺεϨουϓʔϧ ͰλεΫ͕ฒྻ࣮ߦ͞ΕΔ • Parquet ϑΥʔϚοτͰɺ1ͭͷϑΝΠϧߦάϧʔϓ ͝ͱʹγʔέϯγϟϧʹಡΈࠐ·ΕΔ • 1ͭͷϑΝΠϧ͔Β1ͭҎ্ͷ
Arrow Record Batch ͕ੜ ͞Εͯɺ࠷ޙʹ·ͱΊͯ Arrow Table ͕ੜ͞ΕΔ
༷ʑͳϑΝΠϧϑΥʔϚοτʹରԠ͢Δ • ݱࡏෳͷ Parquet ϑΝΠϧʹׂ͞Εͨσʔληο τͷରԠΛඋத • AVRO, ORC, JSON,
CSV ͳͲͷҰൠతͳσʔλอଘ༻ͷ ϑΥʔϚοτকདྷతʹରԠ͞ΕΔ • Parquet Ҏ֎ͷϑΥʔϚοτʹରԠ͢Δ Pull Request ৗʹ welcome ͩͱࢥ͏
༷ʑͳϑΝΠϧγεςϜͷରԠ • ରԠࡁΈͷͷ • ϩʔΧϧϑΝΠϧγεςϜ • HDFS • Amazon S3
• ςετ༻ͷϞοΫϑΝΠϧγεςϜ • কདྷతʹରԠ͍ͨ͠ͷ • Google Cloud Storage • Microsoft Azure BLOB Storage
RDB ͔ΒͷಡΈࠐΈ • RDB ͷςʔϒϧΫΤϦͷ݁ՌΛσʔλιʔεͱͯ͑͠ΔΑ͏ʹ͢Δ ܭը͋Δ • ࣍ͷγεςϜ໊ࢦ͠͞Ε͍ͯΔ • SQLite3
• PostgreSQL protocol (pgsql, Vertica, Redshift) • MySQL (and MemSQL) • Microsoft SQL Server (TDS) • HiveServer2 (Hive and Impala) • ClickHouse
Apache Arrow C++ Datasets • Apache Arrow C++ Datasets ͕͋Εɺ͍Ζ͍Ζͳॴ
ʹอଘ͞Ε͍ͯΔ͍Ζ͍ΖͳϑΥʔϚοτͷσʔλΛޮ Α͘ಡΈࠐΜͰ1ͭͷ Arrow Table ʹͰ͖Δ • Arrow Table Λ࡞ͬͨ͋ͱʁ • ͞Βʹੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ • ूܭ౷ܭॲཧΛ͍ͨ͠
Arrow Table Λ࡞ͬͨ͋ͱ • ੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ => Apache Arrow C++ Query
Engine • ूܭ౷ܭॲཧΛ͍ͨ͠ => Apache Arrow C++ Data Frame
Apache Arrow C++ Query Engine • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠SQL෩ͷΫΤ ϦɺσʔλੳͰΑ͘ར༻͞ΕΔ࣌ܥྻૢ࡞ pivot ૢ࡞ͳͲΛ࣮ߦ͢ΔػೳΛఏڙ͢Δ • σʔλϕʔεΛஔ͖͑Δ͜ͱҙਤͤͣɺC++ ͷڞ༗ϥ ΠϒϥϦͱͯ͠ҰൠͷΞϓϦέʔγϣϯʹຒΊࠐΜͰΘ ΕΔ͜ͱΛఆ͍ͯ͠Δ • ·ͩ։ൃ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ
Apache Arrow C++ Data Frame • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠ɺ͍ΘΏΔ σʔλϑϨʔϜ͕උ͍͑ͯΔΑ͏ͳσʔλૢ࡞ɺੳɺू ܭͳͲͷػೳΛఏڙ͢Δ • ։ൃ·ͩ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ • pandas2 Arrow C++ Data Frame ΛόοΫΤϯυͱ ͯ͠࡞ΕΒΕΔͷ͔ͳʁ
Datasets Query Engine Data Frame ϑΝΠϧDBʹอଘ͞Εͨσʔλ ͷΞΫηε͕؆୯ʹͳΔ ϝϞϦ্ͷςʔϒϧσʔλʹର͢Δ ੳΫΤϦ͕؆୯ʹ࣮ߦͰ͖Δ ϝϞϦ্ͷςʔϒϧσʔλΛσʔλ
ϑϨʔϜͱͯ͠ར༻Ͱ͖Δ