Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高速化・並列化・標準化で スケールするML予測システムの開発
Search
Daiki Ikeshima
July 08, 2021
Technology
5
3.1k
高速化・並列化・標準化で スケールするML予測システムの開発
Daiki Ikeshima
July 08, 2021
Tweet
Share
More Decks by Daiki Ikeshima
See All by Daiki Ikeshima
MLOpsの「あるある」課題の解決と、そのためのライブラリgokart
mski_iksm
1
1.1k
gokartのキャッシュ競合防止のロック機能
mski_iksm
0
2k
macのunicode正規化.pdf
mski_iksm
0
29k
実臨床・Webサービス領域での機械学習研究 開発の標準化
mski_iksm
8
25k
pythonでメタプログラミング(メタクラス編)
mski_iksm
1
440
パイプラインツールgokartのタスク競合を解消した話
mski_iksm
0
170
Other Decks in Technology
See All in Technology
OpenID Connect for Identity Assurance の概要と翻訳版のご紹介 / 20250219-BizDay17-OIDC4IDA-Intro
oidfj
0
280
ハッキングの世界に迫る~攻撃者の思考で考えるセキュリティ~
nomizone
13
5.2k
Developer Summit 2025 [14-D-1] Yuki Hattori
yuhattor
19
6.2k
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
730
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
730
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
600
Oracle Cloud Infrastructure:2025年2月度サービス・アップデート
oracle4engineer
PRO
1
220
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
380
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
24
7.2k
RECRUIT TECH CONFERENCE 2025 プレイベント【高橋】
recruitengineers
PRO
0
160
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Language of Interfaces
destraynor
156
24k
Into the Great Unknown - MozCon
thekraken
35
1.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
It's Worth the Effort
3n
184
28k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Six Lessons from altMBA
skipperchong
27
3.6k
Code Reviewing Like a Champion
maltzj
521
39k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Designing for Performance
lara
604
68k
Transcript
ߴԽɾฒྻԽɾඪ४ԽͰ εέʔϧ͢ΔML༧ଌγεςϜͷ։ൃ ʲSansan×Unipos×M3ʳMLOpsษڧձ ΤϜεϦʔגࣜձࣾɹౢେथ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ όά ʁ ʁ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
̏՝ʹରԠ͢ΔͨΊʹ։ൃ͞ΕͨMLγεςϜ: Yule XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ
͜ͷલͱಉ͡ײ͡Ͱ ͳΔૣͰʂ ࠓिதʹʂ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక Yule AutoMLͳ ਪଌγεςϜ ଐਓԽ λΠτͳక ฒߦͯ͠ΔҊ݅ ඪ४Խ ฒྻԽ ߴԽ
Yule: ଟϞσϧΛΞϯαϯϒϧͯ͠ਪ·ͰҰؾʹ࣮ߦ 12 ಛநग़ GBDT Neural Network ϚϧνλεΫֶश సҠֶश ֶशࡁ
Ϟσϧ Ξϯαϯϒϧ ਪ ڭࢣσʔλ
ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ 13 ਪ σʔλऩू ಛ࡞ Ϟσϧ࡞ ֶश࣮ߦ ֶशࢹ ֶशධՁ վળΠςϨʔγϣϯ
Λߴʹճ͢ ։ൃऀҎ֎Ͱ ࣮ߦͰ͖ΔΑ͏ʹ ଟͷҊ݅Λ ฒߦͯ͠ରԠͰ͖Δ Ҋ݅̍ Ҋ݅̎ Ҋ݅̏ ඪ४Խ ฒྻԽ ߴԽ
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
14 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
15 ಛ࡞ʙֶशʙਪΛKubernetes্Ͱ࣮ࢪ ֶश ਪ CVͷFold͝ͱʹϊʔυࢄ ਪରϢʔβΛׂͯ͠ϊʔυࢄ ᶃ KubernetesΛ༻͍ͯࢄॲཧ ฒྻԽ ߴԽ
16 • ཁ݅ʹ߹ΘͤͯϊʔυϓʔϧΛ͍͚Δ • GKEͷϓϦΤϯϓςΟϒϧϊʔυΛͬͯྉۚΛઅ —> ΨϯΨϯࢄͰ͖Δ • ෳͷֶशਪΛಉ࣌ฒߦʹճͤΔ •
࣮ݧΠςϨʔγϣϯ͕ߴԽ͠ɺੑೳվળʹूதͰ͖Δ ֶश ਪ CPU༏ઌϊʔυ ϝϞϦ༏ઌϊʔυ ฒྻԽ ߴԽ ᶃ KubernetesΛ༻͍ͯࢄॲཧ
17 ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ •
ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ Yule Kubernetes GCR BigQuery GCS docker Πϝʔδ ಛ σʔλ ڭࢣ σʔλ • ࣮ݧઃఆΛઃఆϑΝΠϧʹهड़͢Δ͚ͩͰ • ઃఆʹԊͬͯdockerΠϝʔδ/σʔλΛGCR, BQ, GCSͳͲ͔Βऔಘ • KubernetesʹࢄσϓϩΠ ίʔυ hash: ff34 tag: ff34 push build & push ඪ४Խ
18 • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ • ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ
Yule Kubernetes • ઃఆϑΝΠϧΛॻ͚ͩ͘ͰֶशΛ࣮ߦͰ͖ΔΑ͏ʹͳͬͨ • ։ൃͱ࣮ߦ͕͠ίʔυΛҙֶࣝͤͣशΛճͤΔ • ➔ίΞ։ൃऀҎ֎Ͱ࣮ߦՄೳʹ • ࣮ݧઃఆͱίʔυΛඥ͚ • ࠷৽͚ͩͰͳ͘աڈͷίʔυࢀরͰ͖Δ • ➔࠶ݱੑΛ୲อ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ඪ४Խ
ᶅ TensorBoardʹΑΔֶशࢹ 19 KubernetesͳͲϦϞʔτڥͰࢄֶͯ͠श͢ΔͱܦաΛѲͮ͠Β͍ ੑೳվળͷΠςϨʔγϣϯ͕ૣ͘ͳͬͨ TensorBoardͰֶशۂઢͳͲֶशϝτϦΫεΛ ϦΞϧλΠϜࢹ ɹˠ ֶशվળͷώϯτΛಘΒΕΔ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 20 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 21 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎ ߴԽ
ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 22 • ಛྔͷੜϓϩηε͕ίʔυԽ͞Ε͍ͯΔ • ಛྔσʔλ͕Ωϟογϡ • ➔ Ҋ݅ʹΑΒ͍ͣճͤΔ
• ➔ ઃఆΛม͑ͨ࠶࣮ݧͰ࠶ར༻ʹΑΔ࣌ؒॖ • ϓϩηε్͕தͰམ్ͪͯதͷΩϟογϡ͔Β࠶։ • ➔ ҆৺ͯ͠GKEͷϓϦΤϯϓςΟϒϧϊʔυΛ͑Δ • Ωϟογϡ࠶ར༻ʹΑ࣮ͬͯߦ࣌ؒΛॖͰ͖ͨ • ϓϦΤϯϓςΟϒϧͷ׆༻ͰGKEͷྉۚͷઅ͕Ͱ͖ͨ ߴԽ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 23
• YuleҎ֎ͷMLϓϩμΫτͰ͍ͬͯΔσʔλࣅ͍ͯΔ • BQ͔Βσʔλऔಘ͢ΔͨΊʹͦΕͧΕSQLΛॻ͔ͳ͍ͱ͍͚ͳ͍ ඪ४Խ Yule ML1 ML2 ML3 SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 24
• μϯϩʔυ༻ͷڞ௨ϥΠϒϥϦΛ༻ • طଘͷμϯϩʔυϝιου͕͍·ΘͤΔ ➔ SQLΛϓϩμΫτ͝ͱʹॻ͔ͳͯ͘ࡁΉ • gokartͰඪ४Խ͞Ε͓ͯΓಡΈॻ͖͍͢͠ • ➔ ୭Ͱ؆୯ʹ͑Δ ඪ४Խ Yule ML1 ML2 ML3 mushroom μϯϩʔυ༻ ϥΠϒϥϦ SQL ϝιουΛར༻
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
25 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
26 ΤϜεϦʔͰMLγεςϜΛ։ൃɾվળͯ͘͠ΕΔਓΛืूதͰ͢ https://jobs.m3.com/engineer/ ̏՝Λղܾ͢Δ͜ͱͰεέʔϧ͢ΔγεςϜ͕Ͱ͖ͨ • ߴԽɿվળΠςϨʔγϣϯΛߴʹճͤͨ • ฒྻԽɿଟͷҊ݅Λಉ࣌ਐߦͰ͜ͳͤͨ • ඪ४Խɿ։ൃ/࣮ߦΛͨ͜͠ͱͰɺ৽نϝϯόʔͰ͙͢ʹ࣮ߦͰ͖ͨ
·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ