Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高速化・並列化・標準化で スケールするML予測システムの開発
Search
Daiki Ikeshima
July 08, 2021
Technology
5
3.2k
高速化・並列化・標準化で スケールするML予測システムの開発
Daiki Ikeshima
July 08, 2021
Tweet
Share
More Decks by Daiki Ikeshima
See All by Daiki Ikeshima
MLOpsの「あるある」課題の解決と、そのためのライブラリgokart
mski_iksm
1
1.4k
gokartのキャッシュ競合防止のロック機能
mski_iksm
0
2.3k
macのunicode正規化.pdf
mski_iksm
0
34k
実臨床・Webサービス領域での機械学習研究 開発の標準化
mski_iksm
8
26k
pythonでメタプログラミング(メタクラス編)
mski_iksm
1
490
パイプラインツールgokartのタスク競合を解消した話
mski_iksm
0
220
Other Decks in Technology
See All in Technology
OSSで50の競合と戦うためにやったこと
yamadashy
3
1k
Kubernetes self-healing of your workload
hwchiu
0
580
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
380
Retrospectiveを振り返ろう
nakasho
0
130
What's new in OpenShift 4.20
redhatlivestreaming
0
320
20251027_findyさん_音声エージェントLT
almondo_event
2
480
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
110
OPENLOGI Company Profile for engineer
hr01
1
45k
20251027_マルチエージェントとは
almondo_event
1
460
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
640
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
2
370
Behind Postgres 18: The People, the Code, & the Invisible Work | Claire Giordano | PGConfEU 2025
clairegiordano
0
150
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How to train your dragon (web standard)
notwaldorf
97
6.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Docker and Python
trallard
46
3.6k
The Language of Interfaces
destraynor
162
25k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
Music & Morning Musume
bryan
46
6.9k
Statistics for Hackers
jakevdp
799
220k
How to Ace a Technical Interview
jacobian
280
24k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Done Done
chrislema
185
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Transcript
ߴԽɾฒྻԽɾඪ४ԽͰ εέʔϧ͢ΔML༧ଌγεςϜͷ։ൃ ʲSansan×Unipos×M3ʳMLOpsษڧձ ΤϜεϦʔגࣜձࣾɹౢେथ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ όά ʁ ʁ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
̏՝ʹରԠ͢ΔͨΊʹ։ൃ͞ΕͨMLγεςϜ: Yule XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ
͜ͷલͱಉ͡ײ͡Ͱ ͳΔૣͰʂ ࠓिதʹʂ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక Yule AutoMLͳ ਪଌγεςϜ ଐਓԽ λΠτͳక ฒߦͯ͠ΔҊ݅ ඪ४Խ ฒྻԽ ߴԽ
Yule: ଟϞσϧΛΞϯαϯϒϧͯ͠ਪ·ͰҰؾʹ࣮ߦ 12 ಛநग़ GBDT Neural Network ϚϧνλεΫֶश సҠֶश ֶशࡁ
Ϟσϧ Ξϯαϯϒϧ ਪ ڭࢣσʔλ
ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ 13 ਪ σʔλऩू ಛ࡞ Ϟσϧ࡞ ֶश࣮ߦ ֶशࢹ ֶशධՁ վળΠςϨʔγϣϯ
Λߴʹճ͢ ։ൃऀҎ֎Ͱ ࣮ߦͰ͖ΔΑ͏ʹ ଟͷҊ݅Λ ฒߦͯ͠ରԠͰ͖Δ Ҋ݅̍ Ҋ݅̎ Ҋ݅̏ ඪ४Խ ฒྻԽ ߴԽ
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
14 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
15 ಛ࡞ʙֶशʙਪΛKubernetes্Ͱ࣮ࢪ ֶश ਪ CVͷFold͝ͱʹϊʔυࢄ ਪରϢʔβΛׂͯ͠ϊʔυࢄ ᶃ KubernetesΛ༻͍ͯࢄॲཧ ฒྻԽ ߴԽ
16 • ཁ݅ʹ߹ΘͤͯϊʔυϓʔϧΛ͍͚Δ • GKEͷϓϦΤϯϓςΟϒϧϊʔυΛͬͯྉۚΛઅ —> ΨϯΨϯࢄͰ͖Δ • ෳͷֶशਪΛಉ࣌ฒߦʹճͤΔ •
࣮ݧΠςϨʔγϣϯ͕ߴԽ͠ɺੑೳվળʹूதͰ͖Δ ֶश ਪ CPU༏ઌϊʔυ ϝϞϦ༏ઌϊʔυ ฒྻԽ ߴԽ ᶃ KubernetesΛ༻͍ͯࢄॲཧ
17 ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ •
ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ Yule Kubernetes GCR BigQuery GCS docker Πϝʔδ ಛ σʔλ ڭࢣ σʔλ • ࣮ݧઃఆΛઃఆϑΝΠϧʹهड़͢Δ͚ͩͰ • ઃఆʹԊͬͯdockerΠϝʔδ/σʔλΛGCR, BQ, GCSͳͲ͔Βऔಘ • KubernetesʹࢄσϓϩΠ ίʔυ hash: ff34 tag: ff34 push build & push ඪ४Խ
18 • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ • ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ
Yule Kubernetes • ઃఆϑΝΠϧΛॻ͚ͩ͘ͰֶशΛ࣮ߦͰ͖ΔΑ͏ʹͳͬͨ • ։ൃͱ࣮ߦ͕͠ίʔυΛҙֶࣝͤͣशΛճͤΔ • ➔ίΞ։ൃऀҎ֎Ͱ࣮ߦՄೳʹ • ࣮ݧઃఆͱίʔυΛඥ͚ • ࠷৽͚ͩͰͳ͘աڈͷίʔυࢀরͰ͖Δ • ➔࠶ݱੑΛ୲อ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ඪ४Խ
ᶅ TensorBoardʹΑΔֶशࢹ 19 KubernetesͳͲϦϞʔτڥͰࢄֶͯ͠श͢ΔͱܦաΛѲͮ͠Β͍ ੑೳվળͷΠςϨʔγϣϯ͕ૣ͘ͳͬͨ TensorBoardͰֶशۂઢͳͲֶशϝτϦΫεΛ ϦΞϧλΠϜࢹ ɹˠ ֶशվળͷώϯτΛಘΒΕΔ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 20 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 21 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎ ߴԽ
ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 22 • ಛྔͷੜϓϩηε͕ίʔυԽ͞Ε͍ͯΔ • ಛྔσʔλ͕Ωϟογϡ • ➔ Ҋ݅ʹΑΒ͍ͣճͤΔ
• ➔ ઃఆΛม͑ͨ࠶࣮ݧͰ࠶ར༻ʹΑΔ࣌ؒॖ • ϓϩηε్͕தͰམ్ͪͯதͷΩϟογϡ͔Β࠶։ • ➔ ҆৺ͯ͠GKEͷϓϦΤϯϓςΟϒϧϊʔυΛ͑Δ • Ωϟογϡ࠶ར༻ʹΑ࣮ͬͯߦ࣌ؒΛॖͰ͖ͨ • ϓϦΤϯϓςΟϒϧͷ׆༻ͰGKEͷྉۚͷઅ͕Ͱ͖ͨ ߴԽ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 23
• YuleҎ֎ͷMLϓϩμΫτͰ͍ͬͯΔσʔλࣅ͍ͯΔ • BQ͔Βσʔλऔಘ͢ΔͨΊʹͦΕͧΕSQLΛॻ͔ͳ͍ͱ͍͚ͳ͍ ඪ४Խ Yule ML1 ML2 ML3 SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 24
• μϯϩʔυ༻ͷڞ௨ϥΠϒϥϦΛ༻ • طଘͷμϯϩʔυϝιου͕͍·ΘͤΔ ➔ SQLΛϓϩμΫτ͝ͱʹॻ͔ͳͯ͘ࡁΉ • gokartͰඪ४Խ͞Ε͓ͯΓಡΈॻ͖͍͢͠ • ➔ ୭Ͱ؆୯ʹ͑Δ ඪ४Խ Yule ML1 ML2 ML3 mushroom μϯϩʔυ༻ ϥΠϒϥϦ SQL ϝιουΛར༻
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
25 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
26 ΤϜεϦʔͰMLγεςϜΛ։ൃɾվળͯ͘͠ΕΔਓΛืूதͰ͢ https://jobs.m3.com/engineer/ ̏՝Λղܾ͢Δ͜ͱͰεέʔϧ͢ΔγεςϜ͕Ͱ͖ͨ • ߴԽɿվળΠςϨʔγϣϯΛߴʹճͤͨ • ฒྻԽɿଟͷҊ݅Λಉ࣌ਐߦͰ͜ͳͤͨ • ඪ४Խɿ։ൃ/࣮ߦΛͨ͜͠ͱͰɺ৽نϝϯόʔͰ͙͢ʹ࣮ߦͰ͖ͨ
·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ