Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Free-Form Image Inpainting with Gated Convolution
Search
Masanori YANO
September 13, 2019
Science
0
1k
Free-Form Image Inpainting with Gated Convolution
論文LT会で作成した「Free-Form Image Inpainting with Gated Convolution」の説明資料です。
Masanori YANO
September 13, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
530
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
570
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
570
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
690
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
860
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
510
SRCNN: Image Super Resolution Using CNN
msnr
0
730
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
データベース08: 実体関連モデルとは?
trycycle
PRO
0
940
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
0
100
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
Lean4による汎化誤差評価の形式化
milano0017
1
330
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
170
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
350
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
890
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
980
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
150
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
280
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
660
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
Embracing the Ebb and Flow
colly
88
4.8k
Optimizing for Happiness
mojombo
379
70k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
890
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Scaling GitHub
holman
463
140k
Docker and Python
trallard
46
3.6k
Automating Front-end Workflow
addyosmani
1371
200k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Transcript
画像処理&機械学習 論文LT会 #7 Free-Form Image Inpainting with Gated Convolution 2019年9月13日(金)
矢農 正紀 (Masanori YANO)
論文 2 標題: Free-Form Image Inpainting with Gated Convolution 論文のURL:
https://arxiv.org/abs/1806.03589 公式ページ: http://jiahuiyu.com/deepfill2/ ⇒ 画像のInpainting(修復)の手法に関する論文 著者の所属は、イリノイ大学及びAdobe Research 選んだ理由 ・画像を生成する観点で、Inpaintingの手法に関心あり ・ICCV 2019採択の論文で、本論文の手法が引用されていた ・NVIDIAのP-Convを長いこと理解できなかった ・本論文の説明と参考文献[4]で、ようやくP-Convを把握
Inpaintingとは 3 [入力] マスクを含む画像 [出力] マスクを除去した画像 ⇒ 本論文では、マスク(白塗り)は 任意の形状に対応し、加えて ユーザーのスケッチ(黒い線)も
ガイダンス的な情報として活用
Inpaintingのアプローチ 4 [1] GLCIC(Globally and Locally Consistent Image Completion) Dilated
Convolutionを含むCNN + GAN [2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) Partial Convolutionを用いたU-Net構造のCNN [3] 本論文(Free-Form Image Inpainting with Gated Convolution) Gated ConvolutionのCNN(Dilatedも使用) + SN-PatchGAN ⇒ 「エンコーダ→デコーダ」のCNNで修復するところは共通 スキップ接続あり
P-Conv(Partial Convolution) 5 マスクを考慮して畳み込み、マスクは更新で縮める ・入力画像とは別に、マスクのチャネルを使用 1=マスクされていない、0=マスクされている ・入力画像は、マスクを考慮して畳み込み ・マスクは、定数のカーネルで畳み込んで 0以外は1に ⇒
次第に縮んでいく バイアス項は 簡単のため省略
Gated Convolution 6 二種類の重みを使って、マスクの畳み込みも学習 はReLUなどの活性化関数、はシグモイド関数 (活性化関数を通した結果と、0~1のシグモイド関数とのアダマール積) バイアス項は 簡単のため省略
本論文のネットワークアーキテクチャ 7 SN-PatchGANと呼称 ・Generatorは、Gated Convolutionを中心としたCNN ・Discriminatorは、CNNで畳み込まれた特徴量で個別判定 - カーネルサイズ5・ストライド2で畳み込み - Spectral
Normalizationを使用するSN-GANベース 学習のためのマスクやスケッチは、アルゴリズムで自動生成
まとめ 8 本論文はGated ConvolutionとSN-PatchGANを提案 ・任意の形状のマスクやスケッチに対応できた事例を提示 ・定量的な評価は、バリデーション画像のlossの平均を比較 ・50人のユーザーに、本物の画像と修復画像を見せて評価も - 修復画像の88.7%を「リアル」と判定(本物は94.3%) 所感
・Inpaintingの論文は、成功事例の画像がインパクト大 ・一方で、だめな事例については 後続の論文で初めて見ることも ・新しい手法やアーキテクチャは 違うタスクに適用できるかも
参考文献 9 [1] GLCIC(Globally and Locally Consistent Image Completion) http://iizuka.cs.tsukuba.ac.jp/projects/completion/
[2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) https://arxiv.org/abs/1804.07723 [3] Onion-Peel Networks for Deep Video Completion https://arxiv.org/abs/1908.08718 ↑ Gated Convolutionを知るきっかけとなったICCV 2019論文(動画の修復) [4] DeepCreamPyで学ぶモザイク除去 https://note.mu/koshian2/n/naa60d5c9ebba ↑ P-ConvやU-Netの実装コードを含む、わかりやすい解説