Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Free-Form Image Inpainting with Gated Convolution
Search
Masanori YANO
September 13, 2019
Science
0
990
Free-Form Image Inpainting with Gated Convolution
論文LT会で作成した「Free-Form Image Inpainting with Gated Convolution」の説明資料です。
Masanori YANO
September 13, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
500
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
550
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
540
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
650
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
830
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
480
SRCNN: Image Super Resolution Using CNN
msnr
0
660
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
330
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.6k
Spectral Sparsification of Hypergraphs
tasusu
0
290
Symfony Console Facelift
chalasr
2
430
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
520
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
300
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
170
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
250
小杉考司(専修大学)
kosugitti
2
640
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
110
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
160
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
470
Featured
See All Featured
Facilitating Awesome Meetings
lara
54
6.3k
Producing Creativity
orderedlist
PRO
344
40k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Designing for Performance
lara
608
69k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
The Invisible Side of Design
smashingmag
299
50k
Faster Mobile Websites
deanohume
306
31k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Java REST API Framework Comparison - PWX 2021
mraible
30
8.5k
Transcript
画像処理&機械学習 論文LT会 #7 Free-Form Image Inpainting with Gated Convolution 2019年9月13日(金)
矢農 正紀 (Masanori YANO)
論文 2 標題: Free-Form Image Inpainting with Gated Convolution 論文のURL:
https://arxiv.org/abs/1806.03589 公式ページ: http://jiahuiyu.com/deepfill2/ ⇒ 画像のInpainting(修復)の手法に関する論文 著者の所属は、イリノイ大学及びAdobe Research 選んだ理由 ・画像を生成する観点で、Inpaintingの手法に関心あり ・ICCV 2019採択の論文で、本論文の手法が引用されていた ・NVIDIAのP-Convを長いこと理解できなかった ・本論文の説明と参考文献[4]で、ようやくP-Convを把握
Inpaintingとは 3 [入力] マスクを含む画像 [出力] マスクを除去した画像 ⇒ 本論文では、マスク(白塗り)は 任意の形状に対応し、加えて ユーザーのスケッチ(黒い線)も
ガイダンス的な情報として活用
Inpaintingのアプローチ 4 [1] GLCIC(Globally and Locally Consistent Image Completion) Dilated
Convolutionを含むCNN + GAN [2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) Partial Convolutionを用いたU-Net構造のCNN [3] 本論文(Free-Form Image Inpainting with Gated Convolution) Gated ConvolutionのCNN(Dilatedも使用) + SN-PatchGAN ⇒ 「エンコーダ→デコーダ」のCNNで修復するところは共通 スキップ接続あり
P-Conv(Partial Convolution) 5 マスクを考慮して畳み込み、マスクは更新で縮める ・入力画像とは別に、マスクのチャネルを使用 1=マスクされていない、0=マスクされている ・入力画像は、マスクを考慮して畳み込み ・マスクは、定数のカーネルで畳み込んで 0以外は1に ⇒
次第に縮んでいく バイアス項は 簡単のため省略
Gated Convolution 6 二種類の重みを使って、マスクの畳み込みも学習 はReLUなどの活性化関数、はシグモイド関数 (活性化関数を通した結果と、0~1のシグモイド関数とのアダマール積) バイアス項は 簡単のため省略
本論文のネットワークアーキテクチャ 7 SN-PatchGANと呼称 ・Generatorは、Gated Convolutionを中心としたCNN ・Discriminatorは、CNNで畳み込まれた特徴量で個別判定 - カーネルサイズ5・ストライド2で畳み込み - Spectral
Normalizationを使用するSN-GANベース 学習のためのマスクやスケッチは、アルゴリズムで自動生成
まとめ 8 本論文はGated ConvolutionとSN-PatchGANを提案 ・任意の形状のマスクやスケッチに対応できた事例を提示 ・定量的な評価は、バリデーション画像のlossの平均を比較 ・50人のユーザーに、本物の画像と修復画像を見せて評価も - 修復画像の88.7%を「リアル」と判定(本物は94.3%) 所感
・Inpaintingの論文は、成功事例の画像がインパクト大 ・一方で、だめな事例については 後続の論文で初めて見ることも ・新しい手法やアーキテクチャは 違うタスクに適用できるかも
参考文献 9 [1] GLCIC(Globally and Locally Consistent Image Completion) http://iizuka.cs.tsukuba.ac.jp/projects/completion/
[2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) https://arxiv.org/abs/1804.07723 [3] Onion-Peel Networks for Deep Video Completion https://arxiv.org/abs/1908.08718 ↑ Gated Convolutionを知るきっかけとなったICCV 2019論文(動画の修復) [4] DeepCreamPyで学ぶモザイク除去 https://note.mu/koshian2/n/naa60d5c9ebba ↑ P-ConvやU-Netの実装コードを含む、わかりやすい解説