Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Free-Form Image Inpainting with Gated Convolution
Search
Masanori YANO
September 13, 2019
Science
0
1k
Free-Form Image Inpainting with Gated Convolution
論文LT会で作成した「Free-Form Image Inpainting with Gated Convolution」の説明資料です。
Masanori YANO
September 13, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
530
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
570
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
570
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
690
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
860
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
510
SRCNN: Image Super Resolution Using CNN
msnr
0
730
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
機械学習 - SVM
trycycle
PRO
1
900
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
190
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
640
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
360
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
170
Hakonwa-Quaternion
hiranabe
1
140
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
490
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
0
110
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
200
KH Coderチュートリアル(スライド版)
koichih
1
48k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Fireside Chat
paigeccino
40
3.7k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Automating Front-end Workflow
addyosmani
1371
200k
Faster Mobile Websites
deanohume
310
31k
GraphQLとの向き合い方2022年版
quramy
49
14k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Docker and Python
trallard
46
3.6k
The Language of Interfaces
destraynor
162
25k
Bash Introduction
62gerente
615
210k
Transcript
画像処理&機械学習 論文LT会 #7 Free-Form Image Inpainting with Gated Convolution 2019年9月13日(金)
矢農 正紀 (Masanori YANO)
論文 2 標題: Free-Form Image Inpainting with Gated Convolution 論文のURL:
https://arxiv.org/abs/1806.03589 公式ページ: http://jiahuiyu.com/deepfill2/ ⇒ 画像のInpainting(修復)の手法に関する論文 著者の所属は、イリノイ大学及びAdobe Research 選んだ理由 ・画像を生成する観点で、Inpaintingの手法に関心あり ・ICCV 2019採択の論文で、本論文の手法が引用されていた ・NVIDIAのP-Convを長いこと理解できなかった ・本論文の説明と参考文献[4]で、ようやくP-Convを把握
Inpaintingとは 3 [入力] マスクを含む画像 [出力] マスクを除去した画像 ⇒ 本論文では、マスク(白塗り)は 任意の形状に対応し、加えて ユーザーのスケッチ(黒い線)も
ガイダンス的な情報として活用
Inpaintingのアプローチ 4 [1] GLCIC(Globally and Locally Consistent Image Completion) Dilated
Convolutionを含むCNN + GAN [2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) Partial Convolutionを用いたU-Net構造のCNN [3] 本論文(Free-Form Image Inpainting with Gated Convolution) Gated ConvolutionのCNN(Dilatedも使用) + SN-PatchGAN ⇒ 「エンコーダ→デコーダ」のCNNで修復するところは共通 スキップ接続あり
P-Conv(Partial Convolution) 5 マスクを考慮して畳み込み、マスクは更新で縮める ・入力画像とは別に、マスクのチャネルを使用 1=マスクされていない、0=マスクされている ・入力画像は、マスクを考慮して畳み込み ・マスクは、定数のカーネルで畳み込んで 0以外は1に ⇒
次第に縮んでいく バイアス項は 簡単のため省略
Gated Convolution 6 二種類の重みを使って、マスクの畳み込みも学習 はReLUなどの活性化関数、はシグモイド関数 (活性化関数を通した結果と、0~1のシグモイド関数とのアダマール積) バイアス項は 簡単のため省略
本論文のネットワークアーキテクチャ 7 SN-PatchGANと呼称 ・Generatorは、Gated Convolutionを中心としたCNN ・Discriminatorは、CNNで畳み込まれた特徴量で個別判定 - カーネルサイズ5・ストライド2で畳み込み - Spectral
Normalizationを使用するSN-GANベース 学習のためのマスクやスケッチは、アルゴリズムで自動生成
まとめ 8 本論文はGated ConvolutionとSN-PatchGANを提案 ・任意の形状のマスクやスケッチに対応できた事例を提示 ・定量的な評価は、バリデーション画像のlossの平均を比較 ・50人のユーザーに、本物の画像と修復画像を見せて評価も - 修復画像の88.7%を「リアル」と判定(本物は94.3%) 所感
・Inpaintingの論文は、成功事例の画像がインパクト大 ・一方で、だめな事例については 後続の論文で初めて見ることも ・新しい手法やアーキテクチャは 違うタスクに適用できるかも
参考文献 9 [1] GLCIC(Globally and Locally Consistent Image Completion) http://iizuka.cs.tsukuba.ac.jp/projects/completion/
[2] P-Conv(Image Inpainting for Irregular Holes Using Partial Convolutions) https://arxiv.org/abs/1804.07723 [3] Onion-Peel Networks for Deep Video Completion https://arxiv.org/abs/1908.08718 ↑ Gated Convolutionを知るきっかけとなったICCV 2019論文(動画の修復) [4] DeepCreamPyで学ぶモザイク除去 https://note.mu/koshian2/n/naa60d5c9ebba ↑ P-ConvやU-Netの実装コードを含む、わかりやすい解説