Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニング - グラフ構造の諸指標
Search
Y. Yamamoto
PRO
June 20, 2025
Science
0
160
データマイニング - グラフ構造の諸指標
1. グラフの大きさ
2. 密度
3. 連結性
4. 次数の分布
Y. Yamamoto
PRO
June 20, 2025
Tweet
Share
More Decks by Y. Yamamoto
See All by Y. Yamamoto
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
320
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
420
データマイニング - グラフ埋め込み入門
trycycle
PRO
0
57
データマイニング - ウェブとグラフ
trycycle
PRO
0
150
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
950
データマイニング - コミュニティ発見
trycycle
PRO
0
130
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
920
データマイニング - ノードの中心性
trycycle
PRO
0
250
データベース10: 拡張実体関連モデル
trycycle
PRO
0
960
Other Decks in Science
See All in Science
Ignite の1年間の軌跡
ktombow
0
140
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
120
学術講演会中央大学学員会府中支部
tagtag
0
300
Transport information Geometry: Current and Future II
lwc2017
0
180
Celebrate UTIG: Staff and Student Awards 2025
utig
0
110
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
IWASAKI Hideo
genomethica
0
130
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
100
My Favourite Book in 2024: Get Rid of Your Japanese Accent
lagenorhynque
1
100
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
980
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
240
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
600
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
A designer walks into a library…
pauljervisheath
207
24k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Unsuck your backbone
ammeep
671
58k
Typedesign – Prime Four
hannesfritz
42
2.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
810
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
GraphQLとの向き合い方2022年版
quramy
49
14k
Adopting Sorbet at Scale
ufuk
77
9.5k
Transcript
グラフ構造の諸指標 ⼭本 祐輔 名古屋市⽴⼤学 データサイエンス研究科
[email protected]
第10回 データマイニング (グラフ分析入門) ⼭本祐輔
クリエイティブコモンズライセンス (CC BY-NC-SA 4.0)
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体 ノードの 重要度評価
コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
グラフを「把握したい」ケース グラフを把握したい グラフ 全体 ノードの 重要度評価 コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
はじめにグラフ全体の特徴を理解することは重要 ノード 単体 グラフの 部分構造
グラフの⼤きさを⽰す指標: ノード数 グラフに含まれるノードの数 1 0 2 3 4 5 |
V | = 6 # NetworkXを使う場合 V = G.nodes() len(V) # 以下でもOK G.number_of_nodes()
グラフの⼤きさを⽰す指標: 直径 (diameter) グラフに属するノード間の距離の最大値 1 0 2 3 4 5
(最も離れているノード同⼠の距離) 1 0 4 2 3 5 d = 3 d = 1
グラフの⼤きさを⽰す指標: 直径 (diameter) d = ? グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5
グラフの⼤きさを⽰す指標: 直径 (diameter) d = 3 グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5 # NetworkXを使う場合 nx.diameter(G)
余談: 離⼼数 (eccentricity) 注目ノードから他ノードへの距離の最大値 1 0 2 3 4 5
ノード0の離⼼数 = 3 1 0 2 3 4 5 ノード2の離⼼数 = 2 グラフの直径とは「グラフ中のノード離心数の最大値」
グラフの⼤きさを⽰す指標: 半径 (radius) グラフに属するノードの離心数の最小値 1 0 2 3 4 5
1 0 4 2 3 5 半径r = 2 r = 1 (直径d = 3) (直径d = 1)
グラフの⼤きさを⽰す指標: 半径 (radius) r = ? 1 0 4 2
3 5 グラフに属するノードの離心数の最小値
グラフの⼤きさを⽰す指標: 半径 (radius) r = 3 グラフに属するノードの離心数の最小値 1 0 4
2 3 5 # NetworkXを使う場合 nx.radius(G)
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 1 0 2 3 4 5
ノード集合をV、 エッジ集合をEとすると = | E | | V | C2 密度 密度 = ! "#$ nx.density(G) # NetworkXを使う場合
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 密度 = ! !"# = 0.4
1 0 4 2 3 5 1 0 4 2 3 5 密度 = 1
完全グラフ(complete graph) グラフ中の全ノード間にエッジが張られている グラフを完全グラフと呼ぶ 1 0 4 2 3 5
密度 = 1
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
1 0 4 2 3 5 ⾮連結グラフ
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
nx.is_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
1 0 4 2 3 5 強連結でない
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
nx.is_strongly_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 ノード2の次数 = 3 ノード4の次数 = 1
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 G.degree[2] # NetworkXを使う場合 # ノード2の次数(=3)を返す
同じノード数,密度を持つのに次数分布が異なるグラフの例
Hands-on タイム 以下のURLにアクセスして, 第10回のクイズを解いてみよう https://graphnote.hontolab.org/ 23
回 実施日 トピック 9 06/13 グラフデータ 10 06/20 グラフ構造の諸指標 11
06/27 ノードの中心性 12 07/04 コミュニティ発見 13 07/11 ウェブグラフ 14 07/18 グラフ埋め込み 15 07/25 総合演習 – 社会ネットワーク分析 授業計画 24