Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Understanding Chinese Checkers with Heu...
Search
Masanori YANO
June 07, 2019
Science
0
450
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
論文LT会で作成したChinese Checkers論文の説明資料です。
Masanori YANO
June 07, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
450
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
520
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
490
Free-Form Image Inpainting with Gated Convolution
msnr
0
920
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
600
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
790
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
SRCNN: Image Super Resolution Using CNN
msnr
0
560
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
240510 COGNAC LabChat
kazh
0
130
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
950
WCS-LA-2024
lcolladotor
0
120
統計的因果探索の方法
sshimizu2006
1
1.2k
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
390
Machine Learning for Materials (Lecture 6)
aronwalsh
0
510
Machine Learning for Materials (Lecture 8)
aronwalsh
0
410
【人工衛星】座標変換についての説明
02hattori11sat03
0
110
Spectral Sparsification of Hypergraphs
tasusu
0
170
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.3k
Boil Order
uni_of_nomi
0
120
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
Code Reviewing Like a Champion
maltzj
520
39k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
How to train your dragon (web standard)
notwaldorf
88
5.7k
How STYLIGHT went responsive
nonsquared
95
5.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
How to Ace a Technical Interview
jacobian
276
23k
Teambox: Starting and Learning
jrom
133
8.8k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Transcript
画像処理&機械学習 論文LT会 #3 Towards Understanding Chinese Checkers with Heuristics, Monte
Carlo Tree Search, and Deep Reinforcement Learning 2019年6月7日(金) 矢農 正紀 (Masanori YANO)
論文 2 Towards Understanding Chinese Checkers with Heuristics, Monte Carlo
Tree Search, and Deep Reinforcement Learning 論文のURL: https://arxiv.org/abs/1903.01747 ⇒ Chinese Checkersに、AlphaZeroの手法を適用した論文 著者は、オーストラリアのシドニー大学のメンバー 選んだ理由 ・AlphaZeroの応用に関心があり、arXiv論文を検索 - AlphaGoから3年が経過しても、期待ほど広がらない - CNNによる状態の認識やMCTSは、応用もあると期待 CNN: Convolutional Neural Network(畳み込みニューラルネットワーク) MCTS: Monte-Carlo Tree Search(モンテカルロ木探索)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも
Chinese Checkersとは 4 手番ごとにコマを動かすゲームで、中国とは無関係 ・全ての自分のコマを、対岸まで移動させることが目的 ・ふつうの1マス移動に加えて、他のコマ一つを飛び越せる ・飛び越して動かすときは、繰り返し飛び越すことが可能 ・囲碁や将棋やチェッカーと異なり、コマは取られない ・論文では二人対戦に限定し、コマの数も赤と青6個ずつ ・論文では、距離が2以上のコマも飛び越せるルールを採用
論文のChinese Checkersの状態表現 5 7×7×7のテンソルを入力とし、ResNet構造のCNN ・7×7の行列に、コマのID(1~6)を埋め込み ・(赤と青)×3ターン+手番=7枚のチャネル ・AlphaGo ZeroやAlphaZeroと同様に、 CNNは、盤面の価値と打ち手の方策を出力
論文のMCTS(モンテカルロ木探索) 6 MCTSを175回繰り返し、1盤面の価値と方策を取得 [1] 次に探索すべき手を求める(ノイズを加えて、確率的に) [2] まだ探索していない手であれば、新しいLeafを展開 [3] 訪問ルートとLeafのCNN予測値を使って、データを更新 ⇒
180回の対戦で得られたデータを使って、CNNを学習 損失関数は、AlphaGo ZeroやAlphaZeroと同一 交差エントロピーなので「-」が付くはず
論文の結果・まとめ 7 Chinese Checkersに、AlphaZeroの手法を適用 ・ヒューリスティックを入れれば、経験者に100戦中63勝 (探索範囲を制限/最初はGreedyなエージェントで対戦) ・tabula rasa(ゼロから)ではヒューリスティック入りに全敗 ・比較対象のQ学習では、基本的な打ち方しか獲得できず 所感
・GTX 1080一枚のハードウェア環境で経験者超えは凄い ・コマ1個ごとに1チャネルとした方が、学習しやすそう (拡張も踏まえて、チャネル数の増加を嫌った可能性も)