Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Understanding Chinese Checkers with Heu...
Search
Masanori YANO
June 07, 2019
Science
0
480
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
論文LT会で作成したChinese Checkers論文の説明資料です。
Masanori YANO
June 07, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
490
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
540
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
530
Free-Form Image Inpainting with Gated Convolution
msnr
0
990
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
640
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
820
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
SRCNN: Image Super Resolution Using CNN
msnr
0
650
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
LIMEを用いた判断根拠の可視化
kentaitakura
0
480
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1k
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
4
320
Online Feedback Optimization
floriandoerfler
0
1k
ほたるのひかり/RayTracingCamp10
kugimasa
1
580
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
280
サイゼミ用因果推論
lw
1
5.3k
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
110
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
200
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.3k
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
600
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
780
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
245
12k
Producing Creativity
orderedlist
PRO
344
40k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
GraphQLの誤解/rethinking-graphql
sonatard
70
10k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Cult of Friendly URLs
andyhume
78
6.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.6k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
Automating Front-end Workflow
addyosmani
1369
200k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Transcript
画像処理&機械学習 論文LT会 #3 Towards Understanding Chinese Checkers with Heuristics, Monte
Carlo Tree Search, and Deep Reinforcement Learning 2019年6月7日(金) 矢農 正紀 (Masanori YANO)
論文 2 Towards Understanding Chinese Checkers with Heuristics, Monte Carlo
Tree Search, and Deep Reinforcement Learning 論文のURL: https://arxiv.org/abs/1903.01747 ⇒ Chinese Checkersに、AlphaZeroの手法を適用した論文 著者は、オーストラリアのシドニー大学のメンバー 選んだ理由 ・AlphaZeroの応用に関心があり、arXiv論文を検索 - AlphaGoから3年が経過しても、期待ほど広がらない - CNNによる状態の認識やMCTSは、応用もあると期待 CNN: Convolutional Neural Network(畳み込みニューラルネットワーク) MCTS: Monte-Carlo Tree Search(モンテカルロ木探索)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも
Chinese Checkersとは 4 手番ごとにコマを動かすゲームで、中国とは無関係 ・全ての自分のコマを、対岸まで移動させることが目的 ・ふつうの1マス移動に加えて、他のコマ一つを飛び越せる ・飛び越して動かすときは、繰り返し飛び越すことが可能 ・囲碁や将棋やチェッカーと異なり、コマは取られない ・論文では二人対戦に限定し、コマの数も赤と青6個ずつ ・論文では、距離が2以上のコマも飛び越せるルールを採用
論文のChinese Checkersの状態表現 5 7×7×7のテンソルを入力とし、ResNet構造のCNN ・7×7の行列に、コマのID(1~6)を埋め込み ・(赤と青)×3ターン+手番=7枚のチャネル ・AlphaGo ZeroやAlphaZeroと同様に、 CNNは、盤面の価値と打ち手の方策を出力
論文のMCTS(モンテカルロ木探索) 6 MCTSを175回繰り返し、1盤面の価値と方策を取得 [1] 次に探索すべき手を求める(ノイズを加えて、確率的に) [2] まだ探索していない手であれば、新しいLeafを展開 [3] 訪問ルートとLeafのCNN予測値を使って、データを更新 ⇒
180回の対戦で得られたデータを使って、CNNを学習 損失関数は、AlphaGo ZeroやAlphaZeroと同一 交差エントロピーなので「-」が付くはず
論文の結果・まとめ 7 Chinese Checkersに、AlphaZeroの手法を適用 ・ヒューリスティックを入れれば、経験者に100戦中63勝 (探索範囲を制限/最初はGreedyなエージェントで対戦) ・tabula rasa(ゼロから)ではヒューリスティック入りに全敗 ・比較対象のQ学習では、基本的な打ち方しか獲得できず 所感
・GTX 1080一枚のハードウェア環境で経験者超えは凄い ・コマ1個ごとに1チャネルとした方が、学習しやすそう (拡張も踏まえて、チャネル数の増加を嫌った可能性も)