Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Move Evaluation in Go Using Deep Convolutional ...
Search
Masanori YANO
July 22, 2019
Science
1
790
Move Evaluation in Go Using Deep Convolutional Neural Networks
論文LT会で作成した、CNNで囲碁の打ち手を予測する論文の説明資料です。
Masanori YANO
July 22, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
450
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
520
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
490
Free-Form Image Inpainting with Gated Convolution
msnr
0
920
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
600
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
450
SRCNN: Image Super Resolution Using CNN
msnr
0
560
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
150
Spectral Sparsification of Hypergraphs
tasusu
0
170
WCS-LA-2024
lcolladotor
0
120
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
220
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
190
20240420 Global Azure 2024 | Azure Migrate でデータセンターのサーバーを評価&移行してみる
olivia_0707
2
900
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
390
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
29k
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
270
小杉考司(専修大学)
kosugitti
2
560
【人工衛星】座標変換についての説明
02hattori11sat03
0
110
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
334
57k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
YesSQL, Process and Tooling at Scale
rocio
169
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Designing for humans not robots
tammielis
250
25k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Being A Developer After 40
akosma
87
590k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Building Adaptive Systems
keathley
38
2.3k
Transcript
画像処理&機械学習 論文LT会 #5 Move Evaluation in Go Using Deep Convolutional
Neural Networks 2019年7月22日(月) 矢農 正紀 (Masanori YANO)
論文 2 Move Evaluation in Go Using Deep Convolutional Neural
Networks 論文のURL: https://arxiv.org/abs/1412.6564 ⇒ CNNで「KGS Go Server」の打ち手を予測した論文 著者の所属は、トロント大学・Google Brain/DeepMind 選んだ理由 ・AlphaGoやAlphaZeroの手法の応用に関心あり ・CNNへの入力とするための「状態の表現」に関心あり (囲碁や将棋は、基本的なルールを把握している程度)
Google DeepMindメンバーの囲碁研究 3 [0] ICLR 2015の論文: CNNで「KGS Go Server」の打ち手を55%予測 https://arxiv.org/pdf/1412.6564.pdf
[1] AlphaGo Fan: 「KGS Go Server」の棋譜データでプロ棋士に勝利 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf [2] AlphaGo Lee: トップクラスのプロ棋士に勝利 [3] AlphaGo Master: ネット碁で、プロ棋士に無敗 [4] AlphaGo Zero: 棋譜データを使わずに強く https://deepmind.com/documents/119/agz_unformatted_nature.pdf [5] AlphaZero: 囲碁に加えて、チェスと将棋でも強く https://deepmind.com/documents/260/alphazero_preprint.pdf ⇒ AlphaZeroで、Google DeepMindの「囲碁研究は」終了 論文に関心ある場合は、赤字の論文からが読みやすいかも 今回取り上げる論文
コンピュータ囲碁のアプローチ 4 2006年以降、MCTS(モンテカルロ木探索)が主流 ・現在の状態から、乱数を含めて終局までシミュレーション ・シミュレーションするための評価関数は、MCTSでも重要 ⇒ AlphaGoは、CNN評価関数+強化学習+MCTS CNN評価関数の入力 ・サイズは、囲碁の盤面と同じく19×19 ・チャネルは、現在の状態と、それに関連する特徴量
(例) 現在の局面: 黒/白で2チャネル、空きで1チャネル CNN評価関数の出力 [1] 現在の状態の評価値(その局面が、有利か不利か) [2] 次に取るべき行動(どの手を打つべきか)
本論文のアプローチ 5 現在の状態を「36チャネル×19×19」で表現 [参考] AlphaGoは48チャネルと、13/15チャネル(対戦用) AlphaGo ZeroとAlphaZero(の囲碁)は17チャネル 対象とした「KGS Go Server」参加者のランク:
初段~9段 ⇒ 9チャネルのうち一つの19×19を全て1とし、他を全て0 CNNはゼロパディング+最初だけ5×5で、以降は全て3×3 教師データ数は27.4 millionで、テストデータ数は2 million
本論文の主な結果(1/2) 6 CNNのレイヤー数を変えたときの、棋譜との一致率 ・中間層のチャネル数は128で、比較用に3レイヤーは16も ・横軸のは、CNNの出力のうちtop-(上位の手まで)
本論文の主な結果(2/2) 7 CNNのレイヤー数を変えたときの、一致率と強さ ・中間層のチャネル数は128で、比較用に3レイヤーは16も ⇒ 12レイヤーのCNNの「55.2%」が最高 ・囲碁プログラムのGnuGoと対戦させたときの勝率も評価 ・CNNを使った既存研究や、2014年の「彩」より高い精度 ・KGSで6段の、GnuGoには完勝する打ち手と同等の精度
まとめ 8 本論文は、CNNにより高い精度で人が打つ手を予測 ・テストデータで、最高55%の精度(top-1) ・論文には、CNNの出力だけでMCTSに勝利した棋譜も ・AlphaGoの伏線でCNN+MCTSの評価も 所感 ・この時点では、入力に特徴量も多い ・CNNの最近の手法も、少し効果あるかも (AlphaGo
Zero以降はResNet) ・「画像+特徴情報」の可能性に期待 - PFNのPaintsChainer(初期) 1チャネル+色塗りヒント3チャネル - 筑波大学の飯塚さんのGLCIC 3チャネル+マスク1チャネル