Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Memorizing Normality to Detect Anomaly: Memory-...
Search
Masanori YANO
August 02, 2019
Science
0
670
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
論文LT会で作成した「Memorizing Normality to Detect Anomaly」の説明資料です。
Masanori YANO
August 02, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
560
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
840
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
490
SRCNN: Image Super Resolution Using CNN
msnr
0
690
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
930
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
420
データベース08: 実体関連モデルとは?
trycycle
PRO
0
670
機械学習 - 授業概要
trycycle
PRO
0
190
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
130
Lean4による汎化誤差評価の形式化
milano0017
1
220
データベース03: 関係データモデル
trycycle
PRO
1
120
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
450
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
950
Introd_Img_Process_2_Frequ
hachama
0
560
機械学習 - SVM
trycycle
PRO
1
820
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
200
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Designing for humans not robots
tammielis
253
25k
Raft: Consensus for Rubyists
vanstee
140
7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
GraphQLとの向き合い方2022年版
quramy
47
14k
Navigating Team Friction
lara
187
15k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
RailsConf 2023
tenderlove
30
1.1k
Transcript
画像処理&機械学習 論文LT会 #6 Memorizing Normality to Detect Anomaly: Memory-augmented Deep
Autoencoder for Unsupervised Anomaly Detection 2019年8月2日(金) 矢農 正紀 (Masanori YANO)
論文 2 Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder
for Unsupervised Anomaly Detection 論文のURL: https://arxiv.org/abs/1904.02639 First Author: https://donggong1.github.io/ ⇒ 異常検知の論文で、ICCV 2019に採択されたとのこと 著者の所属は、オーストラリアのアデレード大学など 選んだ理由 ・CNNを活用した「異常検知」関連のタスクに関心あり ・Attentionが流行りだが、それ以上にMemoryに関心あり (Memory NetworksやNeural Turing Machinesの方向性) ・arXivを検索したら、異常検知+Memoryの本論文を発見
異常検知とは 3 画像や、時系列データなどから自動的に異常を検出 ・異常(Anomaly): 教師データの分布から逸脱したパターン ・新規性(Novelty): 既存の教師データに含まれないパターン ⇒ 「異常 ⊆
新規性」の関係 学習の種類で分類可能 ・教師あり学習 ⇒ 異常検知では、あまり考えられない状況 ・半教師あり学習 ⇒ わずかしかない教師データが問題 ・教師なし学習 ⇒ 一般に、教師あり/半教師ありより難しい 深層学習の進展以降も、さまざまな手法が開発 ⇒ 「深層学習の異常検知サーベイ」論文も発表済み Deep Learning for Anomaly Detection: A Survey 論文のURL: https://arxiv.org/abs/1901.03407
本論文のポイント 4 Autoencoderの中間にAttentionベースのMemory ・学習時に、重み・バイアスとともにMemoryを更新 ・推論時は、Memoryを固定 ⇒ データの「暗記」内容 ・Memory参照の重みは、エンコーダ出力と各Memoryとの コサイン類似度を全て計算し、それらのSoftmaxで算出 ・Hard
Shrinkageと呼ぶ「スパース化」を実施(後述)
本論文の評価結果(1/2) 5 複数のデータセットで評価(Memory関連の評価も) [1] MNIST・CIFAR-10 [2] 動画の異常検知データセット UCSD-Ped2・CHUK Avenue・ShanghaiTech [3]
サイバーセキュリティのデータセット KDDCUP ⇒ 全てのデータセットで、比較対象の方式よりも高い精度 UCSD-Ped2データセットのときの再構成誤差の例(Frameの赤枠が異常)
本論文の評価結果(2/2) 6 評価のうち「動画の異常検知データセット」の結果 [1] MemAE: 提案方式(動画のときは3次元のCNN) [2] MemAE-nonSpar: Memory参照のスパース化「なし」 ⇒
スパース化: 閾値λ以下を0に(ReLuを活用して実装)
まとめ 7 本論文は、Memoryを用いたAutoencoder異常検知 ・損失関数は再構成誤差とMemory参照重みのエントロピー ・汎用性が高いと主張し、複数のデータセットで検証済み ・今後は、より挑戦的なタスクへのMemoryの適用を検討 ・論文に「PyTorchで実装」とあるが(現在のところ)未公開 GitHub: https://github.com/donggong1/memae-anomaly-detection 所感
・個人的には、VAEによる異常検知より「行けそう」な予感 ・一方、GANを用いた手法との性能比較は記載がなく未知数 ・実際のデータで動かした場合の性能は、今後の確認事項 α = 0.0002で評価