Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Memorizing Normality to Detect Anomaly: Memory-...

Avatar for Masanori YANO Masanori YANO
August 02, 2019

Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection

論文LT会で作成した「Memorizing Normality to Detect Anomaly」の説明資料です。

Avatar for Masanori YANO

Masanori YANO

August 02, 2019
Tweet

More Decks by Masanori YANO

Other Decks in Science

Transcript

  1. 画像処理&機械学習 論文LT会 #6 Memorizing Normality to Detect Anomaly: Memory-augmented Deep

    Autoencoder for Unsupervised Anomaly Detection 2019年8月2日(金) 矢農 正紀 (Masanori YANO)
  2. 論文 2 Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder

    for Unsupervised Anomaly Detection 論文のURL: https://arxiv.org/abs/1904.02639 First Author: https://donggong1.github.io/ ⇒ 異常検知の論文で、ICCV 2019に採択されたとのこと 著者の所属は、オーストラリアのアデレード大学など 選んだ理由 ・CNNを活用した「異常検知」関連のタスクに関心あり ・Attentionが流行りだが、それ以上にMemoryに関心あり (Memory NetworksやNeural Turing Machinesの方向性) ・arXivを検索したら、異常検知+Memoryの本論文を発見
  3. 異常検知とは 3 画像や、時系列データなどから自動的に異常を検出 ・異常(Anomaly): 教師データの分布から逸脱したパターン ・新規性(Novelty): 既存の教師データに含まれないパターン ⇒ 「異常 ⊆

    新規性」の関係 学習の種類で分類可能 ・教師あり学習 ⇒ 異常検知では、あまり考えられない状況 ・半教師あり学習 ⇒ わずかしかない教師データが問題 ・教師なし学習 ⇒ 一般に、教師あり/半教師ありより難しい 深層学習の進展以降も、さまざまな手法が開発 ⇒ 「深層学習の異常検知サーベイ」論文も発表済み Deep Learning for Anomaly Detection: A Survey 論文のURL: https://arxiv.org/abs/1901.03407
  4. 本論文の評価結果(1/2) 5 複数のデータセットで評価(Memory関連の評価も) [1] MNIST・CIFAR-10 [2] 動画の異常検知データセット UCSD-Ped2・CHUK Avenue・ShanghaiTech [3]

    サイバーセキュリティのデータセット KDDCUP ⇒ 全てのデータセットで、比較対象の方式よりも高い精度 UCSD-Ped2データセットのときの再構成誤差の例(Frameの赤枠が異常)