Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
480
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
450
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
510
Free-Form Image Inpainting with Gated Convolution
msnr
0
900
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
600
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
780
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
440
SRCNN: Image Super Resolution Using CNN
msnr
0
550
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
510
Introduction to Graph Neural Networks
joisino
PRO
4
2k
ウェーブレットおきもち講座
aikiriao
1
780
(2024) Livres, Femmes et Math
mansuy
0
100
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
140
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
190
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
470
240510 COGNAC LabChat
kazh
0
130
Spectral Sparsification of Hypergraphs
tasusu
0
160
Machine Learning for Materials (Lecture 7)
aronwalsh
0
810
Machine Learning for Materials (Lecture 6)
aronwalsh
0
500
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
170
Featured
See All Featured
Ruby is Unlike a Banana
tanoku
96
11k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Learning to Love Humans: Emotional Interface Design
aarron
272
40k
The World Runs on Bad Software
bkeepers
PRO
65
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
46
2.1k
The Language of Interfaces
destraynor
154
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
27
1.9k
For a Future-Friendly Web
brad_frost
175
9.4k
Writing Fast Ruby
sferik
626
61k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Build The Right Thing And Hit Your Dates
maggiecrowley
32
2.4k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)