Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
530
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
490
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
540
Free-Form Image Inpainting with Gated Convolution
msnr
0
990
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
640
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
820
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
480
SRCNN: Image Super Resolution Using CNN
msnr
0
650
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.5k
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
120
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
120
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.2k
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
520
Explanatory material
yuki1986
0
130
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
280
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
240
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
120
How were Quaternion discovered
kinakomoti321
2
1.2k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Facilitating Awesome Meetings
lara
53
6.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Rails Girls Zürich Keynote
gr2m
94
13k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
Documentation Writing (for coders)
carmenintech
69
4.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
12
1.4k
Done Done
chrislema
183
16k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
4 Signs Your Business is Dying
shpigford
183
22k
Building an army of robots
kneath
304
45k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)