Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
560
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
520
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
560
Free-Form Image Inpainting with Gated Convolution
msnr
0
1k
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
680
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
850
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.2k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
500
SRCNN: Image Super Resolution Using CNN
msnr
0
710
One-Class Convolutional Neural Network
msnr
0
1.3k
Other Decks in Science
See All in Science
機械学習 - 授業概要
trycycle
PRO
0
220
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
830
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
510
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
980
KH Coderチュートリアル(スライド版)
koichih
1
44k
サイゼミ用因果推論
lw
1
7.4k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
140
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
560
データベース10: 拡張実体関連モデル
trycycle
PRO
0
960
オンプレミス環境にKubernetesを構築する
koukimiura
0
300
データベース03: 関係データモデル
trycycle
PRO
1
240
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
420
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Gamification - CAS2011
davidbonilla
81
5.4k
It's Worth the Effort
3n
185
28k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Navigating Team Friction
lara
188
15k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Side Projects
sachag
455
43k
RailsConf 2023
tenderlove
30
1.2k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
2.9k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)