Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pyramid-Based Fully Convolutional Networks for ...
Search
Masanori YANO
October 11, 2019
Science
0
510
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文LT会で作成した「Pyramid-Based Fully Convolutional Networks for Cell Segmentation」の説明資料です。
Masanori YANO
October 11, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
470
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
530
Free-Form Image Inpainting with Gated Convolution
msnr
0
960
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
610
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
810
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
450
SRCNN: Image Super Resolution Using CNN
msnr
0
600
One-Class Convolutional Neural Network
msnr
0
1.2k
Other Decks in Science
See All in Science
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.1k
Celebrate UTIG: Staff and Student Awards 2024
utig
0
530
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
160
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
190
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
270
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
390
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
120
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
110
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
180
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
250
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
140
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Building Adaptive Systems
keathley
38
2.4k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
RailsConf 2023
tenderlove
29
970
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Scaling GitHub
holman
459
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Unsuck your backbone
ammeep
669
57k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
It's Worth the Effort
3n
183
28k
Typedesign – Prime Four
hannesfritz
40
2.5k
Optimizing for Happiness
mojombo
376
70k
Transcript
画像処理&機械学習 論文LT会 #番外編 ~MICCAI 2019 予習編~ Pyramid-Based Fully Convolutional Networks
for Cell Segmentation 2019年10月11日(金) 矢農 正紀 (Masanori YANO)
論文 2 標題: Pyramid-Based Fully Convolutional Networks for Cell Segmentation
論文のURL: http://web.mst.edu/~yinz/Papers/ ⇒ MICCAI 2018の、細胞のSegmentationに関する論文 著者の所属は、アメリカのミズーリ工科大学 (Second Authorは、今秋からニューヨーク州立大学) 選んだ理由 ・MICCAI 2018の一覧で、題名を見た瞬間に気になった ⇒ Semantic Segmentationを解くCNNで、ピラミッド? ・Experimentsを見たら、比較対象に対し、わりと高い精度
Semantic Segmentationとは 3 入力画像に対して、画素レベルで何の物体か推論 参考になる資料 ⇒ #1の論文LT会の「semantic segmentation サーベイ」 https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958
引用元: https://arxiv.org/pdf/1411.4038.pdf FCNのFigure 1.
FCNとU-Net 4 FCN(Fully Convolutional Network) ・全結合を使用しないことで、任意サイズの入力画像に対応 ・前ページの図には記載がないが、スキップ接続(Add)あり U-Net ・MICCAI 2015で発表
・全結合なし、スキップ接続(Concatenate)あり 引用元: https://arxiv.org/pdf/1505.04597.pdf
Object Detection(物体検出)では 5 FPN(Feature Pyramid Network)の図が明快 (a) 複数の解像度を畳み込み各々の特徴マップを作ると遅い (b) 畳み込んだ最後の特徴マップだけでは解像度が粗い
(c) 複数の特徴マップを利用すると下の方の特徴が弱い (d) FPNの構造なら(b)や(c)のように速く、より正確 引用元: https://arxiv.org/pdf/1612.03144.pdf
本論文の提案手法 6 複数のFCNの推論結果を組み合わせて出力 ・それぞれのFCNは、異なる解像度の推論を担当 ・図の「+」は、重み付き平均(評価時の設定はα = 0.5) ・LAPGANの論文を引用 (Gaussian PyramidとLaplacian
Pyramidの定義で) はピラミッドの深さ
評価結果・まとめ 7 PHCと、独自データセットのPhase100で評価 所感 ・シンプルなアプローチで、かつ高い精度に見えて好印象 ・そのかわり、実行速度は厳しそう(論文では言及なし)