Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RNNとLSTM
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Convergence Lab.
August 26, 2018
Technology
0
290
RNNとLSTM
コンラボ勉強会資料
RNNとLSTMの簡単な説明
Convergence Lab.
August 26, 2018
Tweet
Share
More Decks by Convergence Lab.
See All by Convergence Lab.
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
RAGで制御可能なFull-duplex音声対話システム
mssmkmr
0
88
工学系の関数解析輪読会 - 第1章 線型空間
mssmkmr
0
140
NeurIPS2018読み会@PFN Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
mssmkmr
0
2.1k
考える技術・書く技術まとめ
mssmkmr
0
740
Global-Locally Self-Attentive Dialogue State Tracker
mssmkmr
1
260
Other Decks in Technology
See All in Technology
AWS Network Firewall Proxyを触ってみた
nagisa53
1
230
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
120
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
110
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
940
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
Featured
See All Featured
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Automating Front-end Workflow
addyosmani
1371
200k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Transcript
コンラボ勉強会 RNNとLSTM Convergence Lab. 木村優志
はじめに RNNとLSTMの基礎的な概念を勉強しま しょう。 フィードフォワードニューラルネットワーク やバックプロパゲーションの予備知識が 必要です。 2
時系列信号 時系列信号とは時間の流れに従って値が 変わる信号です。音声などがこれに当た ります。ニューラルネットワークで時系列 信号を扱うにはいくつかの方法がありま す。 まずはじめにフィードフォワード型の ニューラルネットワークで時系列信号を扱 う方法について見ていきましょう。 3
フィードフォワード型ニューラルネットワークと時系列 通常のフィードフォワード型ニューラルネッ トワークで時系列信号を扱う方法を考えま す。単純には、複数の時刻の信号を入力 すればよいはずです。 このような方法をタイムスプライスと言い ました。音声認識などで前に使われた方 法です。 4
フィードフォワード型ニューラルネットワークと時系列 5 通常のフィードフォワード型 ニューラルネットワーク タイムスプライスした フィードフォワード型 ニューラルネットワーク
タイムスプライス型の欠点 タイムスプライス型には2つの弱点があり ます。 ◦ 長期の時系列を扱おうとするとパラ メータが増える ◦ 固定時間長しか扱えない 6
リカレントニューラルネットワーク(RNN) そこで、考え出されたのが再帰的な構造 を持つリカレントニューラルネットワーク (RNN)です。 リカレントニューラルネットワークは、一つ 前の時刻の中間層の出力を、もう一度中 間層に入力するような構造を持っていま す。 7
リカレントニューラルネットワーク(RNN) 8
単純なRNNの欠点 中間層を再帰するだけの単純なRNNは、 長期的な依存構造を扱えないと言われて います。 長期的な構造を扱うための方法として LSTMがあります。 9
LSTM (Long Short Term Memory) LSTMは長期・短期記憶という意味です。 そのために、GateとCellという記憶素子を 組み合わせます。 10
LSTM 11 これがLSTMの素子です。 σはシグモイド関数になります。 詳しく見ていきましょう。
Gate 右図のシグモイドと掛け算を合わせ た部分がGateになります。 Gateはそのまま門のイメージです。 掛け算のユニットに入る信号を通し たり妨げたりします。 シグモイド関数の値が1のとき門が 開いて、信号がそのまま通ります。 逆に、0のときは門が閉じられ、信号が伝 わりません。
12
Cell Cell: Cellは過去の情報を覚えている素子です。 13
Inpute Gate Input GateはCellに入力 x を入れるかどうかを決 めます。 14
Output Gate Output GateはCellの値を出力するかどうかを決 めます。 15
Forget Gate Forget GateはCellの値を忘れる(0にリセットす る)かどうかをきめます。 16
まとめ RNNとLSTMについて簡単に説明しまし た。 LSTMではGateとCellの関係をよくおさえ ておきましょう。 17