Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実際のコードで流れを感じるDeepLearning超入門
Search
naa
May 14, 2020
Programming
0
370
実際のコードで流れを感じるDeepLearning超入門
naa
May 14, 2020
Tweet
Share
More Decks by naa
See All by naa
Open Hack U 2020 vol.4 発表資料
naa
0
55
技育祭 学生LightningTalks!
naa
0
340
よわよわ大学生がKaggleの世界を覗いてみた話
naa
1
890
世界中を敵に回してもあなたの味方bot_技育祭学生LT大会登壇資料
naa
0
290
WEBデザイン×UXデザイン
naa
0
190
HTML/CSS 1カラムレイアウト勉強会資料
naa
0
42
Other Decks in Programming
See All in Programming
SideKiqでジョブが二重起動した事象を深堀りしました
t_hatachi
0
230
WordPress Playground for Developers
iambherulal
0
120
PHPUnit 高速化テクニック / PHPUnit Speedup Techniques
pinkumohikan
1
1.2k
CQRS+ES勉強会#1
rechellatek
0
390
読もう! Android build ドキュメント
andpad
1
240
安全に倒し切るリリースをするために:15年来レガシーシステムのフルリプレイス挑戦記
sakuraikotone
5
2.2k
ステートソーシング型イベント駆動の視点で捉えるCQRS+ES
shinnosuke0522
1
320
英語文法から学ぶ、クリーンな設計の秘訣
newnomad
1
270
AI Agentを利用したAndroid開発について
yuchan2215
0
210
Go1.24で testing.B.Loopが爆誕
kuro_kurorrr
0
160
Modern Angular:Renovation for Your Applications @angularDays 2025 Munich
manfredsteyer
PRO
0
130
PHPのガベージコレクションを深掘りしよう
rinchoku
0
240
Featured
See All Featured
Faster Mobile Websites
deanohume
306
31k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Docker and Python
trallard
44
3.3k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Code Review Best Practice
trishagee
67
18k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
Deep Learning 超入門 実際のコードで流れを感じる エンジニア志望学生LT大会 - TechStudyGroup #2 2020/05/14
自己紹介 • 名前:naa • 属性:大学4年生 • 好きなもの:パンケーキ • 苦手なもの:環境構築 2
作って間もないアカウント @naa_yowayowa
注意! • LT初心者 • プログラミングスキルは授業で習った(+ほんのちょっびっ と)程度 • チャレンジ精神で応募 • とりあえずアウトプットがしたかった
温かい目で見てください… 3
DeepLearningの工程 データ の準備 ネット ワーク の構築 学習 推論 4
実際に実装するとなると どんな感じになるんだろう…? 5
このLTでは 理論的な話は少なめに! 実際のプログラムを見ながら 流れを体感していただこうと思います! 6
Deep Learningを ノリと勢いで解説していきます 時間がないので駆け足で! 7
今回の概要 Pytorchを使います • Python向けのオープンソース機械学習ライブラリ • 参考文献:https://qiita.com/knyrc/items/0a0092b9903b97fb41b4 環境 Google Colabを使用 →環境構築不要!手軽!
→GPUも使える! 8
今回の概要 データセット • The MNIST database • 「0」~「9」の手書きで書かれた数字の画像データと、その画像に書 かれた数字を表すラベルデータから構成される https://weblabo.oscasierra.net/python/ai-mnist-data-detail.html
9
早速コードを見ていきます! 10
#0 Pytorchとscikit-learnのインストール 使うものをあらかじめインストール 11
DeepLearningの工程 データ の準備 ネット ワーク の構築 学習 推論 12
#1 ライブラリインポートと 学習データのダウンロード ライブラリのインポート 学習データのダウンロード 13
#2 DataLoader作成 データセット ↓ 学習データ + テストデータ DataLoaderを作成 … …
14
DeepLearningの工程 データ の準備 ネット ワーク の構築 学習 推論 15
#3 ネットワーク構築 16
#3 ネットワーク構築 それぞれの層の設定 17
DeepLearningの工程 データ の準備 ネット ワーク の構築 学習 推論 18
#4 誤差関数と最適化の手法の設定 • 誤差関数(損失関数) • ニューラルネットワークの性能の「悪さ」を示す指標 • 最適化 • 誤差関数から導かれた値をもとに学習のパラメータを更新する
19
#4 誤差関数と最適化の手法の設定 たったこれだけ!簡単!! 20
#5 学習の設定 学習データをネットワークに入れる 誤差関数を計算 誤差関数から修正分を出す 計算した修正分から最適化 学習モードに切り替え 21
DeepLearningの工程 データ の準備 ネット ワーク の構築 学習 推論 22
#6 推論の設定 テストデータをネットワークに入れる 推論モードに切り替え 推論! 23
#7 学習後データの正解率 • 0回目 707/10000(7%) • 1回目 9533/10000(95%) • 2回目
9543/10000(95%) • 3回目 9495/10000(95%) • 4回目 9547/10000(95%) • 5回目 9637/10000(96%) 24
まとめ 意外とDeepLearningのハードルは低かった 25
ご清聴ありがとうございました! 26
参考文献 • PyTorch で MNIST on Google Colab with GPU
https://qiita.com/knyrc/items/0a0092b9903b97fb41b4 • ゼロから作るDeep Learning ―Pythonで学ぶディープラーニング の理論と実装 27
参考文献 • 今回の発表したものの超個人的詳細メモをはてなブログに書い てみました. • 興味がある人はぜひ • DeepLeaning初心者がPyTorchでMNISTデータセットを用いて 深層学習を行う https://naa-study.hatenablog.com/
28