Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Cerberus

 Cerberus

Data Validation for Humans (and Python)

Presented at
- PiterPy 2017, St. Petersburg
- PyConUK 2016, Cardiff
- PyCon Italy 2016, Florence

Nicola Iarocci

April 15, 2016
Tweet

More Decks by Nicola Iarocci

Other Decks in Programming

Transcript

  1. NICOLA IAROCCI CO-FOUNDER @CIR2K LEAD DEV @AMICA MICROSOFT MVP MONGODB

    MASTER CODERDOJO OPEN SOURCE TL;DR CODER AT HEART
  2. CERBERUS, NOUN. THE WATCH-DOG OF HADES, WHOSE DUTY IT WAS

    TO GUARD THE ENTRANCE. EVERYBODY, SOONER OR LATER, HAD TO GO THERE, AND NOBODY WANTED TO CARRY OFF THE ENTRANCE. Ambrose Bierce The Devil’s Dictionary CERBERUS, THE NAME
  3. CERBERUS AT A GLANCE 1. DEFINE A SCHEMA AND PASS

    IT TO A VALIDATOR INSTANCE >>> from cerberus import Validator >>> schema = {'name': {'type': 'string'}} >>> v = Validator(schema)
  4. CERBERUS AT A GLANCE 2. PASS A DOCUMENT TO THE

    VALIDATE() METHOD >>> document = {'name': 'john doe'} >>> v.validate(document) True
  5. CERBERUS AT A GLANCE ALL TOGETHER NOW >>> from cerberus

    import Validator >>> v = Validator() >>> schema = {'name': {'type': 'string'}} >>> document = {'name': 'john doe’} >>> v.validate(document, schema) True
  6. CERBERUS AT A GLANCE ‘ERRORS’ RETURNS HUMAN-READABLE ERRORS >>> schema

    = { ... 'name': {'type': 'string'}, ... 'age': {'type': 'integer', 'min': 10} ... } >>> document = {'name': 'Little Joe', 'age': 5} >>> v.validate(document, schema) False >>> v.errors {'age': [‘min value is 10’]}
  7. CERBERUS AT A GLANCE UNKNOWN FIELDS NOT ALLOWED BY DEFAULT

    >>> v.validate({'name': 'john', 'sex': 'M'}) False >>> v.errors {'sex': [‘unknown field’]}
  8. CERBERUS AT A GLANCE BUT YOU CAN SET ‘ALLOW_UNKNOWN’ TO

    ALLOW FOR… THE UNKNOWN >>> v.allow_unknown = True >>> v.validate({'name': 'john', 'sex': 'M'}) True
  9. CERBERUS AT A GLANCE OPTIONALLY YOU CAN SET A VALIDATION

    SCHEMA FOR UNKNOWN FIELDS >>> v.schema = {} >>> v.allow_unknown = {'type': 'string'} >>> v.validate({'an_unknown_field': 'john'}) True >>> v.validate({'an_unknown_field': 1}) False >>> v.errors {'an_unknown_field': 'must be of string type'}
  10. CERBERUS AT A GLANCE ‘ALLOW_UNKNOWN’ CAN BE USED IN NESTED

    MAPPINGS >>> v = Validator() >>> v.allow_unknown False >>> v.schema = { ... 'name': {'type': 'string'}, ... 'a_dict': { ... 'type': 'dict', ... 'allow_unknown': True, ... 'schema': { ... 'address': {'type': 'string'} ... } ... } ... } OVERRIDES THE BEHAVIOUR, JUST FOR ‘A_DICT’
  11. CERBERUS AT A GLANCE ‘ALLOW_UNKNOWN’ CAN BE USED IN NESTED

    MAPPINGS >>> v.validate({'name': 'john', ... 'a_dict': {'an_unknown_field': 'is allowed'}}) True >>> v.validate({'name': 'john', ... 'a_dict':{'an_unknown_field': 'is allowed’}, ... 'but_this': 'is not allowed'}) False >>> v.errors {‘but_this’: ['unknown field’]}
  12. CERBERUS AT A GLANCE VALIDATED() RETURNS THE VALIDATED DOCUMENT >>>

    v = Validator(schema) >>> valid_documents = [ ... valid for valid in [ ... v.validated(doc) for doc in documents] ... if valid is not None]
  13. CERBERUS AT A GLANCE NORMALIZED() RETURNS A NORMALIZED COPY (NO

    VALIDATION) >>> schema = {'amount': {'coerce': int}} >>> document = {'model': 'consumerism', 'amount': '1'} >>> normalized_document = v.normalized(document, ... schema) >>> type(normalized_document['amount']) <type 'int'>
  14. CERBERUS AT A GLANCE USING YAML TO DEFINE A VALIDATION

    SCHEMA >>> import yaml >>> schema_text = ''' ... name: ... type: string ... age: ... type: integer ... min: 10 ... ''' >>> schema = yaml.load(schema_text) >>> document = {'name': 'Little Joe', 'age': 5} >>> v.validate(document, schema) False >>> v.errors {'age': [‘min value is 10’]}
  15. CERBERUS VALIDATION RULES ‘TYPE’ CHECKING >>> v.schema = {'quotes': {'type':

    'string'}} >>> v.validate({'quotes': 1}) False OR: BOOLEAN, DATE, DATETIME, MAPPING/DICT, FLOAT, INTEGER, SEQUENCE/LIST, NUMBER, SET, STRING, BINARY
  16. CERBERUS VALIDATION RULES ‘TYPE’ CHECKING >>> v.schema = { ...

    'quotes': {'type':['string','list']}} >>> v.validate({'quotes': 'Hello world!'}) True >>> v.validate({'quotes': ... ['Do not disturb my circles!', 'Heureka!']}) True IF A LIST, ALL LISTED TYPES ARE ALLOWED
  17. CERBERUS VALIDATION RULES REGEX VALIDATION >>> schema = {'email': {

    ... 'type': 'string', ... 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]…'}} >>> document = {'email': '[email protected]'} >>> v.validate(document, schema) True >>> document = {'email': 'john_at_example_dot_com'} >>> v.validate(document, schema) False >>> v.errors {'email': ["value does not match regex ‘^[a-z…'"]}
  18. CERBERUS VALIDATION RULES ALLOWED VALUES (STRING, LIST, INT) >>> v.schema

    = { ... 'role': {'type': 'list', ... 'allowed': ['agent', 'client', 'supplier']}} >>> v.validate({'role': ['agent', 'supplier']}) True >>> v.validate({'role': ['intern']}) False >>> v.errors {'role': ["unallowed values [‘intern']"]}
  19. CERBERUS VALIDATION RULES DEPENDENCIES >>> schema = {'field1': {'required': False},

    ... 'field2': {'required': False, ... 'dependencies': ['field1']}} >>> document = {'field1': 7} >>> v.validate(document, schema) True >>> document = {'field2': 7} >>> v.validate(document, schema) False >>> v.errors {'field2': ["field 'field1' is required”]}
  20. CERBERUS VALIDATION RULES DEPENDENCIES, WITH RESTRICTED VALUES >>> schema =

    {'field1': {'required': False}, ... 'field2': {'required': True, ... 'dependencies': {'field1': ['one', 'two']}}} >>> document = {'field1': 'one', 'field2': 7} >>> v.validate(document, schema) True >>> document = {'field1': 'three', 'field2': 7} >>> v.validate(document, schema) False >>> v.errors {'field2': ["depends on these values: {'field1': ['one', ‘two']}"]}
  21. CERBERUS VALIDATION RULES EXCLUDES >>> v.schema = { ... 'first':

    {'type': 'dict', ... 'excludes': 'second'}, ... 'second': {'type': 'dict', ... 'excludes': 'first'}} >>> v.validate({'first': {}, 'second': {}}) False >>> v.validate({'first': {}}) True >>> v.validate({'second': {}}) True >>> v.validate({}) True
  22. CERBERUS VALIDATION RULES EXCLUDES, WITH EXCLUSIVE OR >>> v.schema =

    { ... 'first': {'type': 'dict', ... 'excludes': 'second', 'required': True}, ... 'that_field': {'type': 'dict', ... 'excludes': 'first', 'required': True}} >>> v.validate({'first': {}, 'second': {}}) False >>> v.validate({'first': {}}) True >>> v.validate({'second': {}}) True >>> v.validate({}) False
  23. CERBERUS VALIDATION RULES MULTIPLE FIELD EXCLUDE >>> v.schema = {

    ... 'first': {'type': 'dict', ... 'excludes': ['second', 'third']}, ... 'second': {'type': 'dict', ... 'excludes': 'first'}, ... 'three': {'type': 'dict'}} >>> v.validate({'first': {}, 'third': {}}) False
  24. CERBERUS VALIDATION RULES SUBDOCUMENT VALIDATION >>> v.schema = { ...

    'a_dict': { ... 'type': 'dict', ... 'schema': { ... 'address': {'type': 'string'}, ... 'city': {'type': 'string', ... 'required': True}}}} >>> v.validate({'a_dict': ... {'address': 'my address’, 'city': 'my town'}}) True
  25. CERBERUS VALIDATION RULES LISTS AND OTHER SEQUENCES OF ARBITRARY VALUES

    >>> schema = { ... 'a_list': { ... 'type': 'list', ... 'schema': {'type': 'integer'}}} >>> document = {'a_list': [3, 4, 5]} >>> v.validate(document, schema) True
  26. CERBERUS VALIDATION RULES SUBDOCUMENTS LIST >>> v.schema = {'rows': ...

    {'type': 'list', ... 'schema': { ... 'type': 'dict', ... 'schema': { ... 'sku': {'type': 'string'}, ... 'price': {'type': 'integer'}}}}} >>> document = { ... 'rows': [{'sku': 'KT123', 'price': 100}]} >>> v.validate(document) True
  27. CERBERUS VALIDATION RULES ALLOF / ANYOF / NONEOF / ONEOF

    >>> schema = {'prop': ... {'type': 'number', ... 'anyof': ... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}} >>> document = {'prop': 5} >>> v.validate(document, schema) True >>> document = {'prop': 105} >>> v.validate(document, schema) True
  28. CERBERUS VALIDATION RULES >>> schema = {'prop': ... {'type': 'number',

    ... 'anyof': ... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}} >>> document = {'prop': 55} >>> v.validate(document, schema) False ALLOF / ANYOF / NONEOF / ONEOF
  29. CERBERUS VALIDATION RULES *OF-RULES MAGIC TYPESAVER {'foo': {'anyof_type': ['string', 'integer']}}

    # is equivalent to: {'foo': { ... 'anyof': [ ... {'type': 'string'}, ... {'type': ‘integer'} ... ]}}
  30. CERBERUS VALIDATION RULES *OF-RULES ALLOW VALIDATION AGAINST MULTIPLE SCHEMAS >>>

    schemas = [{'department': {'required': True, 'regex': '^IT$'}, ... 'phone': {'nullable': True}}, ... {'department': {'required': True}, ... 'phone': {'required': True}}] >>> employee_vldtr = Validator({'employee': {'oneof_schema': schemas, ... 'type': 'dict'}}, ... allow_unknown=True) >>> invalid_employees_phones = [] >>> for employee in employees: ... if not employee_vldtr.validate(employee): ... invalid_employees_phones.append(employee)
  31. CERBERUS VALIDATION RULES ALLOWS TO ‘MAGICALLY’ VALIDATE AGAINST MULTIPLE SCHEMAS

    >>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, ... 'phone': {'nullable': True}}, ... {'department': {'required': True}, ... 'phone': {'required': True}}] >>> employee_vldtr = Validator({'employee': {'oneof_schema': schemas, ... 'type': 'dict'}}, ... allow_unknown=True) >>> invalid_employees_phones = [] >>> for employee in employees: ... if not employee_vldtr.validate(employee): ... invalid_employees_phones.append(employee)
  32. CERBERUS VALIDATION RULES STANDARD RULES SET ALSO INCLUDES ▸ required

    ▸ nullable ▸ forbidden ▸ readonly ▸ empty (wether a string can be empty) ▸ min, max (arbitrary types) ▸ minlength, maxlength (iterable) ▸ valueschema (validation schema for all values of a dict/mapping) ▸ keyschema (validates the keys of a dict/mapping) ▸ and (a lot) more.
  33. CERBERUS AT A GLANCE SCHEMA REGISTRY >>> from cerberus import

    schema_registry >>> schema_registry.add( ... 'user', {'uid': {'min': 1000, 'max': 0xffff}}) >>> schema = { ... 'sender': {'schema': 'user', ... 'allow_unknown': True}, ... 'receiver': {'schema': 'user', ... 'allow_unknown': True}}
  34. CERBERUS AT A GLANCE RULES SET REGISTRY >>> from cerberus

    import rules_set_registry >>> rules_set_registry.extend(( ... ('boolean', {'type': 'boolean'}), ... ('booleans', {'valueschema': 'boolean'}))) >>> schema = {'foo': 'booleans'}
  35. CERBERUS AT A GLANCE RULES SET REGISTRY >>> from cerberus

    import rules_set_registry >>> rules_set_registry.extend(( ... ('boolean', {'type': 'boolean'}), ... ('booleans', {'valueschema': 'boolean'}))) >>> schema = {'foo': 'booleans'}
  36. CERBERUS NORMALIZATION FIELD RENAMING, WITH CUSTOM HANDLER >>> v =

    Validator( ... {}, ... allow_unknown={'rename_handler': int} ... ) >>> v.normalized({'0': 'foo'}) {0: 'foo'}
  37. CERBERUS NORMALIZATION RENAMING, WITH PIPELINE >>> even_digits = lambda x:

    '0' + x if len(x) % 2 else x >>> v = Validator( ... {}, ... allow_unknown={ ... 'rename_handler': [str, even_digits]}) >>> v.normalized({1: 'foo'}) {'01': 'foo'} APPLY STR() FIRST, THEN EVEN_DIGITS()
  38. CERBERUS NORMALIZATION PURGING OF UNKNOWN FIELDS >>> v = Validator({

    ... 'foo': {'type': 'string'}}, purge_unknown=True) >>> v.normalized({'bar': 'not really', 'foo': 'yup'}) {'foo': 'yup'}
  39. CERBERUS NORMALIZATION DEFAULT VALUES >>> v.schema = { ... 'amount':

    {'type': 'integer'}, ... 'kind': {'type': 'string', 'default': 'purchase'}} >>> v.normalized({'amount': 1}) {'amount': 1, 'kind': 'purchase'} >>> v.normalized({'amount': 1, 'kind': None}) {'amount': 1, 'kind': 'purchase'} >>> v.normalized({'amount': 1, 'kind': 'other'}) {'amount': 1, 'kind': 'other'}
  40. CERBERUS NORMALIZATION DEFAULT VALUES, WITH CUSTOM SETTER >>> v.schema =

    { ... 'a': {'type': 'integer', 'required': True}, ... 'b': { ... 'type': 'integer', ... 'default_setter': lambda doc: doc['a'] + 1}} >>> v.normalized({'a': 1}) {'a': 1, 'b': 2}
  41. CERBERUS NORMALIZATION VALUE COERCION >>> to_bool = lambda v: v.lower()

    in ['true', '1'] >>> v.schema = {'flag': {'type': 'boolean', 'coerce': to_bool}} >>> v.validate({'flag': 'true'}) True >>> v.document {'flag': True}
  42. EXTENDING CERBERUS CUSTOM RULES >>> schema = {'amount': ... {'isodd':

    True, 'type': 'integer'}} >>> class MyValidator(Validator): ... def _validate_isodd(self, isodd, field, value): ... if isodd and not bool(value & 1): ... self._error(field, "Must be an odd number") >>> v = MyValidator(schema) >>> v.validate({'amount': 10}) False >>> v.errors {'amount': 'Must be an odd number'} >>> v.validate({'amount': 9}) True
  43. EXTENDING CERBERUS CUSTOM DATA TYPES >>> schema = {'id': {'type':

    'objectid'}} >>> class MyValidator(Validator): ... def _validate_type_objectid(self, field, value): ... if not re.match('[a-f0-9]{24}', value): ... self._error(field, errors.BAD_TYPE) >>> v = MyValidator(schema) >>> v.validate({'id': 'dont think so'}) False >>> v.validate({'id': '56a245e738345b1ca2b25164'}) True
  44. CERBERUS VALIDATION RULES CUSTOM VALIDATION FUNCTIONS >>> def oddity(field, value,

    error): ... if not value & 1: ... error(field, "Must be an odd number") >>> schema = {'amount': {'validator': oddity}} >>> v = Validator(schema) >>> v.validate({'amount': 10}) False >>> v.errors {'amount': 'Must be an odd number'} >>> v.validate({'amount': 9}) True
  45. EXTENDING CERBERUS CUSTOM COERCES class MyNormalizer(Validator): def __init__(self, multiplier, *args,

    **kwargs): super(MyNormalizer, self).__init__(*args, **kwargs) self.multiplier = multiplier def _normalize_coerce_multiply(self, value): try: return value * self.multiplier except Exception as e: self._error(field, errors.COERCION_FAILED, e) >>> schema = {'foo': {'coerce': 'multiply'}} >>> document = {'foo': 2} >>> MyNormalizer(2).normalized(document, schema) {'foo': 4}
  46. EXTENDING CERBERUS CUSTOM DEFAULT SETTERS from datetime import datetime class

    MyNormalizer(Validator): def _normalize_default_setter_utcnow(self, document): return datetime.utcnow() >>> schema = {'date': {'type': 'datetime', ... 'default_setter': ‘utcnow'}} >>> MyNormalizer().normalized({}, schema) {'date': datetime.datetime(...)}
  47. CERBERUS USE CASES UNORTHODOX USE: VALIDATING USER OBJECTS (SIMPLE) >>>

    class ObjectValidator(Validator): ... def validate_object(self, obj): ... return self.validate(obj.__dict__) ... >>> v = ObjectValidator(schema) >>> v.validate_object(person) False >>> v.errors {'age': 'min value is 0'} >>> person.age = 44 >>> v.validate_object(person) True http://nicolaiarocci.com/validating-user-objects-cerberus/
  48. CERBERUS API LEVERAGE THE CERBERUS API ▸ Validator. Normalizes and/or

    validates any mapping against a validation-schema. ▸ ErrorHandlers. BaseErrorHandler is the base class for all error handlers. Subclasses are identified as error-handlers with an instance-test. ▸ ValidationError. A simple class to store and query basic error information. ▸ ErrorList. A list for ValidationError instances that can be queried with the in keyword for a particular error code. ▸ ErrorTree. Base class for DocumentErrorTree and SchemaErrorTree. ▸ validator_factory. Dynamically create a Validator subclass.
  49. WE LOVE IT AT GITPRIME. THE WORLD NEEDS MORE CERBERUS!

    Vincent Driessen CTO, GitPrime @nvie CERBERUS IN THE WILD