Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
英語 × の私が、生成AIの力を借りて、OSSに初コントリビュートした話
Search
asap
March 26, 2025
Programming
0
260
英語 × の私が、生成AIの力を借りて、OSSに初コントリビュートした話
エンジニア達の「完全に理解した」Talk #63
の登壇資料になります。
asap
March 26, 2025
Tweet
Share
More Decks by asap
See All by asap
DeepSeek-R1の論文から読み解く背景技術
personabb
3
620
Other Decks in Programming
See All in Programming
RubyKaigi Hack Space in Tokyo & 函館最速 "予習" 会 / RubyKaigi Hack Space in Tokyo & The Fastest Briefing of RubyKaigi 2026 in Hakodate
moznion
1
110
TSConfigからTypeScriptの世界を覗く
planck16
2
1.2k
CRUD から CQRS へ ~ 分離が可能にする柔軟性
tkawae
0
210
AIコーディングの本質は“コード“ではなく“構造“だった / The essence of AI coding is not “code” but "structure
seike460
PRO
2
690
型安全なDrag and Dropの設計を考える
yudppp
5
630
複雑なフォームを継続的に開発していくための技術選定・設計・実装 #tskaigi / #tskaigi2025
izumin5210
12
5.8k
“技術カンファレンスで何か変わる?” ──RubyKaigi後の自分とチームを振り返る
ssagara00
0
200
生成AI時代のフルスタック開発
kenn
9
2k
型付け力を強化するための Hoogle のすゝめ / Boosting Your Type Mastery with Hoogle
guvalif
1
220
Duke on CRaC with Jakarta EE
ivargrimstad
1
600
データベースの技術選定を突き詰める ~複数事例から考える最適なデータベースの選び方~
nnaka2992
3
4k
當開發遇上包裝:AI 如何讓產品從想法變成商品
clonn
0
230
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
133
9.3k
Embracing the Ebb and Flow
colly
85
4.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
4 Signs Your Business is Dying
shpigford
183
22k
GitHub's CSS Performance
jonrohan
1031
460k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
The Language of Interfaces
destraynor
158
25k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
25
2.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Transcript
asap 英語 の私が、生成AIの力を借りて、 OSSに初コントリビュートした話
1 はじめに 自己紹介 asap AI・機械学習の理論に興味を持つエンジニア。 ZennでAI関連の技術記事を書いてます。 「asap zenn」で検索! @asap2650 ぜひ今アカウント作って登録してください
@asap2650
はじめに
3 はじめに はじめに OSSコントリビュート意外と簡単だったよ ついこの間初めてOSSにコントリビュートした超初心者の身ではありますが OSSへのコントリビュートは「ある程度」プログラミングができる人なら簡単だよ! 普段のコーディングとそんなに違いはなかったよ! ということをお話しできればと思います。 @asap2650
経緯
5 なんのリポジトリ? 経緯 @asap2650 https://github.com/langchain-ai/langchain-google Google CloudのVertexAIやGeminiなどをLangChainで 利用するための「langchain-google」というリポジトリ • VertexAI
Google Cloudが提供する機械学習全般を支援する プラットフォーム • Gemini ChatGPTのGoogle版 • LangChain 大規模言語モデル(LLM)を活用した アプリケーション開発を容易にするフレームワーク
6 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! • ユーザが質問を入力 • LLMがRAGシステムをよびだす。 •
質問文から検索用のベクトルを作る • Dense Embedding Vector :文脈考慮での検索用 • Sparse Embedding Vector :単語での検索用 • Vector Store(DB)に保存された ドキュメント(+ベクトル)と類似度検索 • 検索結果をLLMに返して、それを元に回答させる 【RAGシステムとは】
7 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! Google CloudのDBをベクトルストアとしたRAGのシステムを構築したい ↓ Embeddingsモデルによるベクトル化はできるけど、ハイブリット検索が動かない!? ↓
バグじゃん!!どうしよ・・・ ↓ マイナーな機能だから、自分が修正するしかない・・・
8 どんなバグ? 経緯 @asap2650 チュートリアル通りに実施しても Sparse Embedding Vectorがベクトルストアに格納されない https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/#hybrid-search
バグの原因
10 どんなバグ? バグの原因 @asap2650 データ保存部分にSparse Embedding Vectorに関しての 記述がないバグ
Issueを立てる
12 Issueを立てる Issueを立てる @asap2650 英語ゴミ人間なので OpenAI o1先生に助けてもらいました https://github.com/langchain-ai/langchain-google/issues/720 下記をプロンプトに入れて依頼 •
Issue立てるのが初めてであること • 英語が雑魚なこと • バグを発見した経緯 • バグを含むコード • 修正案
13 Issueを立てる Issueを立てる @asap2650 ちゃんと記載すればメンテナーの方は見てくれる ちゃんと記載しないと、後回しにされるissueも数多くあります。 コメントもらったらコードの修正・PRを実施
コード修正・PR
15 コード修正 コード修正・PR @asap2650 READMEをよく読むこと Langchain-googleの場合は やり方を全部説明してくれていた。 参考になると思うので紹介します。
16 コード修正 コード修正・PR @asap2650 “fork and pull request” workflowを利用する 元のリポジトリを自分のアカウントにForkする
↓ Forkしたリポジトリをローカルにクローン ↓ コードの修正、テスト、フォーマット、リンティングを実施し、リポジトリにpush ↓ 元リポジトリに対してpull requestを行う 詳細:https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project
17 Pull Requestを実施 コード修正・PR @asap2650 gpt-4oの力を借りながら、テンプレートに合わせて記載 PRのテンプレートが用意されている場合もあるので、そちらに合わせる(PULL_REQUEST_TEMPLATE.md) テンプレートがなければ、他の方のPRを参考にすれば良い アイコン載ると嬉しい!
18 まとめ やることは普通のコーディングと同じ 1 S A I R U 英語
× の私が、生成AIの力を借りて、OSSに初コントリビュートした話 英語ができなくても、生成AIでIssueをPRは作れる 2 コントリビュートを歓迎してくれるリポジトリ最高 3