Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第1回 推薦システムとは
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
RecSysLab
PRO
August 06, 2022
Technology
0
550
高校講座 | 第1回 推薦システムとは
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
98
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
150
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
150
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
440
高校講座 | 第2回 内容ベース推薦システム
recsyslab
PRO
0
500
高校講座 | 第3回 協調ベース推薦システム
recsyslab
PRO
0
480
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
840
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
820
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
740
Other Decks in Technology
See All in Technology
AI駆動PjMの理想像 と現在地 -実践例を添えて-
masahiro_okamura
1
110
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.4k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
220
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
180
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
250
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
170
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
550
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
640
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
210
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Context Engineeringの取り組み
nutslove
0
340
Featured
See All Featured
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
210
The Invisible Side of Design
smashingmag
302
51k
First, design no harm
axbom
PRO
2
1.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
New Earth Scene 8
popppiees
1
1.5k
How STYLIGHT went responsive
nonsquared
100
6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Thoughts on Productivity
jonyablonski
74
5k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
57
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第1回 推薦システムとは 奥 健太
推薦システムとは 2
推薦システムとは Amazon [1] • 「この商品を買った人はこんな商品も買っています」 • 購入履歴や閲覧履歴に基づく「おすすめ商品」 Netflix [2] •
ジャンル別の人気動画やトピックごとのおすすめ動画 • 詳細ページに表示される「こちらもオススメ」 YouTube [3] • 再生履歴や検索履歴に基づくおすすめ動画 • 再生中の動画の横に表示される関連動画 [1] https://www.amazon.co.jp/ [2] https://www.netflix.com/ [3] https://support.google.com/youtube/answer/6342839?hl=ja 3
推薦システムとは 推薦システム(recommender system) ユーザの嗜好に合ったアイテム(商品や映画、音楽、本、動画、画像、ニュース 記事など)を提示するシステム 「特定のユーザに最も興味をもたれそうなアイテムを提案するソフトウェ アツールおよび技術」[Ricci+2015] “Recommender Systems (RSs)
are software tools and techniques that provide suggestions for items that are most likely of interest to a particular user.” [Ricci+2015] Recommender Systems: Introduction and Challenges. Recommender Systems Handbook, pp. 1–34. Springer, 2015. 4
なぜ推薦システムが必要か 5
世界の本の数 129,864,880 冊 2010年8月現在 Google Books Searchブログ記事 [4] より [4]
http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) 6
YouTube 毎分 500 時間以上もの動画投稿 2022年6月現在 YouTube検索 - YouTubuのしくみ [5] より
[5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) 7
膨大なコンテンツ 世界の本の数 [4]: ※2010年8月現在 Apple Musicでの配信楽曲数 [6]: ※2022年6月現在 9,000万曲以上 129,864,880冊
Spotifyでの配信楽曲数 [7]: ※2022年6月現在 7,000万曲以上 IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 [4] http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) [6] https://www.apple.com/jp/apple-music/(2022年6月現在) [7] https://www.businessofapps.com/data/spotify-statistics/#4(2022年6月現在) [8] https://www.imdb.com/pressroom/stats/(2022年6月現在) 8
膨大なユーザ生成コンテンツ YouTube [5][9]: ※2022年6月現在 毎分 500 時間以上もの動画投稿 Twitter [10]: ※2018年5月現在
毎分 456,000 ツイート Instagram [10]: ※2018年5月現在 毎分 46,740 写真 Facebook [10]: ※2018年5月現在 毎秒 5 プロフィール [5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) [9] https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/(2022年6月現在) [10] https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/(2022年6月現在) 9
人生の持ち時間 • 人生80年とすると ◦ 80年 × 365日 = 29,200日 •
1日1本映画を観たとしても、29,200本 しか観れない • 全体のわずか 5% ほどしか消費できない IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 限られた持ち時間で本当に面白い映画だけを観たい つまらない映画は観たくない 10
コンテンツ過多(content overload) 面白いコンテンツ、感動するコンテンツが埋もれている どのようにしてそのコンテンツに巡り合うか? 11
推薦システム ユーザの行動履歴(購買履歴や閲覧履歴、評価履歴など)を基にユーザの 興味に合うコンテンツの候補を推薦リストとして提示 12
推薦システム研究の究極的課題 コンピュータは 人の嗜好を予測できるのか? 13
データ×技術による嗜好予測 データ 技術 人のコンテンツに対する嗜好を予測 コンテンツを知る 人を知る 14