Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第3回 協調ベース推薦システム
Search
RecSysLab
PRO
August 06, 2022
Technology
0
470
高校講座 | 第3回 協調ベース推薦システム
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
91
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
150
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
140
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
440
高校講座 | 第1回 推薦システムとは
recsyslab
PRO
0
530
高校講座 | 第2回 内容ベース推薦システム
recsyslab
PRO
0
490
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
820
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
800
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
730
Other Decks in Technology
See All in Technology
AI/MLのマルチテナント基盤を支えるコンテナ技術
pfn
PRO
5
780
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
520
技術以外の世界に『越境』しエンジニアとして進化を遂げる 〜Kotlinへの愛とDevHRとしての挑戦を添えて〜
subroh0508
1
320
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
12
4.3k
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
570
AI駆動開発によるDDDの実践
dip_tech
PRO
0
380
直接メモリアクセス
koba789
0
250
グレートファイアウォールを自宅に建てよう
ctes091x
0
130
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
220
Oracle Technology Night #95 GoldenGate 26ai の実装に迫る1
oracle4engineer
PRO
0
120
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
410
HIG学習用スライド
yuukiw00w
0
110
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
380
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building Adaptive Systems
keathley
44
2.9k
Scaling GitHub
holman
464
140k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Code Review Best Practice
trishagee
73
19k
A better future with KSS
kneath
240
18k
Mobile First: as difficult as doing things right
swwweet
225
10k
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第3回 協調ベース推薦システム 奥 健太
シナリオ Aliceはとある寿司屋を訪れました。この寿司屋では、表に示すように、カツオ、マグロ、中 トロ、タイ、ヒラメ、スズキの6種類の寿司を提供しています。この寿司屋にはAlice、 Bruno、Chiara、Dhruv、Emiがよく訪れます。そして、寿司に対する好みを1から5の5段 階で評価しています。さて、Aliceはカツオとスズキを試したことがありません。果たして、 Aliceはカツオとスズキを好むでしょうか? ユーザ-寿司評価値行列 カツオ マグロ 中トロ
タイ ヒラメ スズキ Alice ? 5 4 1 2 ? Bruno 5 5 4 ? 3 3 Chiara 4 ? 5 2 1 ? Dhruv ? 4 ? 2 1 1 Emi 1 2 1 3 ? 3 2
ユーザ、アイテム、評価履歴 ユーザ: 推薦システムの利用者 アイテム:推薦システムにおいて扱う商品やコンテンツなど 評価値: ユーザのアイテムに対する好き嫌いの程度 ユーザ アイテム 評価値 1:
Alice 2: マグロ 5 1: Alice 3: 中トロ 4 1: Alice 4: タイ 1 1: Alice 5: ヒラメ 2 2: Bruno 1: カツオ 5 : : : 5: Emi 6: スズキ 3 評価履歴 3 評価履歴: ユーザがこれまで利用してきた アイテムに対して与えた評価値の履歴
1 Bruno Chiara Dhruv Emi カ ツ オ マ グ
ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? ユーザの評価履歴をベクトルで表そう Bruno Chiara Dhruv Emi 2 3 4 5 ? ? ? ? ? ? ベクトル*:数を縦または横に並べたもの Aliceのマグロに対する評価値 欠損値: Aliceが未評価 *数学B -> 数学C:ベクトル 評価値ベクトル:特定のユーザの評価履歴をベクトルで表したもの 4 ユーザ アイテム 評価値 1: Alice 2: マグロ 5 1: Alice 3: 中トロ 4 1: Alice 4: タイ 1 1: Alice 5: ヒラメ 2 2: Bruno 1: カツオ 5 : : : 5: Emi 6: スズキ 3 評価履歴
すべてのユーザの評価値ベクトルをつなげよう 1 Bruno Chiara Dhruv Emi カ ツ オ マ
グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 行列*:数を縦と 横に並べたもの *数学C:数学的な表現の工夫 評価値行列:各ユーザの各アイテムに対する評価値を縦と横に並べたもの 5
問題 | Aliceはカツオを好む?スズキを好む? 欠損値 に入るべき評価値をどう求める? ? 1 Bruno Chiara Dhruv
Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 6
案1 | Aliceの平均評価値で予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 3.0 7
案2 | カツオに対する平均評価値で予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 3.3 8
案3 | Aliceと好みが似ているユーザを参考にして予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 4.5 9
似ているユーザを探そう 10
AliceとBrunoの評価値の関係 0 1 5 2 3 4 1 5 2
3 4 Aliceの評価値 Brunoの評価値 マグロ 中トロ ヒラメ 正の相関* *数学I:データの分析 Aliceが高く評価しているアイテムは Brunoも高く評価している 1 Bruno カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 1 2 3 4 5 6 ? ? ? 11
AliceとEmiの評価値の関係 0 1 5 2 3 4 1 5 2
3 4 Aliceの評価値 Emiの評価値 マグロ 中トロ タイ 負の相関* Aliceが高く評価しているアイテムは Emiは低く評価している 1 Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 5 1 2 3 4 5 6 ? ? ? *数学I:データの分析 12
評価値行列の平均中心化 ユーザによって評価基準が異なるため、ユーザごとの平均評価値よりも好 きか嫌いかをみる 平 均 3 4 3 2 2
1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 13
AliceとBrunoは似ている? -2 +2 -1 0 +1 -2 +2 -1 0
+1 Aliceの評価値 Brunoの評価値 マグロ 中トロ ヒラメ 正の相関 AliceとBrunoの評価値の相関係数* ユーザ類似度 *数学I:データの分析 1 Bruno Alice 2 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? 14
AliceとEmiは似ている? 0 Aliceの評価値 Emiの評価値 マグロ 中トロ タイ 負の相関 AliceとEmiの評価値の相関係数* ユーザ類似度
-2 +2 -1 0 +1 -2 +2 -1 0 +1 15 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 1 Emi Alice 5 ? ? ? *数学I:データの分析
演習 | AliceとChiaraの評価値の相関係数 AliceとChiaraの評価値の相関係数* ユーザ類似度 ※計算してみよう(分数、平方根はそのままで良い) 16 1 Chiara Alice
3 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? *数学I:データの分析
演習 | AliceとDhruvの評価値の相関係数 AliceとDhruvの評価値の相関係数* ユーザ類似度 ※計算してみよう(分数、平方根はそのままで良い) 17 1 Dhruv Alice
4 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? *数学I:データの分析
Aliceと好みが似ているユーザは? ユーザ ユーザ類似度 Alice Bruno Chiara Dhruv Emi 類似ユーザ ユーザ類似度が
• 上位 k 人のユーザを選ぶ • しきい値以上のユーザを選ぶ 類似ユーザの選び方 1.000 Aliceと嗜好が類似するユーザ 18
嗜好を予測しよう 19
1 カ ツ オ マ グ ロ 中 ト ロ
タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? ? Aliceのカツオに対する嗜好を予測しよう +1 類似ユーザ 類似ユーザの嗜好を参考に、Aliceがカツオに対して、平均よりも好むか嫌 うかを予測 20 Bruno Chiara Dhruv Emi Alice 2 3 4 5
カ ツ オ マ グ ロ 中 ト ロ タ
イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? Aliceのカツオに対する評価値を予測しよう 元の平均評価値を足して、Aliceの評価基準で評価値を予測 平 均 3 4 3 2 2 1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? +1 4 21
カ ツ オ マ グ ロ 中 ト ロ タ
イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? +1 演習 | Aliceのスズキに対する評価値 ※Aliceのスズキに対する評価値を計算してみよう 平 均 3 4 3 2 2 1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? 4 22
嗜好予測の結果 Aliceはとある寿司屋を訪れました。この寿司屋では、表に示すように、カツオ、マグロ、中 トロ、タイ、ヒラメ、スズキの6種類の寿司を提供しています。この寿司屋にはAlice、 Bruno、Chiara、Dhruv、Emiがよく訪れます。そして、寿司に対する好みを1から5の5段 階で評価しています。さて、Aliceはカツオとスズキを試したことがありません。果たして、 Aliceはカツオとスズキを好むでしょうか? ユーザ-寿司評価値行列 カツオ マグロ 中トロ
タイ ヒラメ スズキ Alice ? 5 4 1 2 ? Bruno 5 5 4 ? 3 3 Chiara 4 ? 5 2 1 ? Dhruv ? 4 ? 2 1 1 Emi 1 2 1 3 ? 3 23 Aliceはカツオを好む 4 Aliceはスズキを嫌う 2