Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第2回 内容ベース推薦システム
Search
RecSysLab
PRO
August 06, 2022
Technology
0
430
高校講座 | 第2回 内容ベース推薦システム
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
80
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
140
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
130
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
410
高校講座 | 第1回 推薦システムとは
recsyslab
PRO
0
480
高校講座 | 第3回 協調ベース推薦システム
recsyslab
PRO
0
420
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
600
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
630
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
580
Other Decks in Technology
See All in Technology
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
380
ビジネスモデリング道場 目的と背景
masuda220
PRO
9
560
インフラをつくるとはどういうことなのか、 あるいはPlatform Engineeringについて
nwiizo
5
2.6k
クラウドサービス事業者におけるOSS
tagomoris
3
880
速くて安いWebサイトを作る
nishiharatsubasa
12
14k
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
1k
君も受託系GISエンジニアにならないか
sudataka
2
440
滅・サービスクラス🔥 / Destruction Service Class
sinsoku
6
1.6k
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
110
組織貢献をするフリーランスエンジニアという生き方
n_takehata
2
1.3k
地方拠点で エンジニアリングマネージャーってできるの? 〜地方という制約を楽しむオーナーシップとコミュニティ作り〜
1coin
1
230
30分でわかる『アジャイルデータモデリング』
hanon52_
9
2.7k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
98
5.4k
Code Review Best Practice
trishagee
67
18k
Building Adaptive Systems
keathley
40
2.4k
Being A Developer After 40
akosma
89
590k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Building Your Own Lightsaber
phodgson
104
6.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Faster Mobile Websites
deanohume
306
31k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第2回 内容ベース推薦システム 奥 健太
シナリオ Aliceはとあるカレー屋を訪れました。このカレー屋では、辛さと甘さの異なる8種類のカレーを提供して います。Aliceは、これまでに5種類のカレーを試してきました。そのうち、下表のように3種類のカレーを 「好き」、2種類のカレーを「嫌い」と評価してきました。評価値が「?」となっているカレーについて は、Aliceはまだ試していません。Aliceにはどのカレーを推薦するのが良いでしょうか? アイテムID アイテム名 辛さ 甘さ 評価値
1 5辛3甘 5 3 好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? Aliceの評価履歴 2
ユーザ、アイテム、評価履歴 ユーザ: 推薦システムの利用者 アイテム:推薦システムにおいて扱う商品やコンテンツなど 評価値: ユーザのアイテムに対する好き嫌い 評価履歴: ユーザがこれまで利用してきた アイテムに対して与えた評価値の履歴 アイテムID
アイテム名 辛さ 甘さ 評価値 1 5辛3甘 5 3 好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? Aliceの評価履歴 3
類似度に基づく推薦 4
アイテムを座標平面上に表してみよう アイテムID アイテム名 辛さ 甘さ 評価値 1 5辛3甘 5 3
好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? 10 5 0 10 5 甘 さ 辛さ 1 2 3 4 5 6 7 8 5
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 アイテムをベクトルで表すと便利 8辛6甘カレー 辛さ 甘さ *数学B -> 数学C:ベクトル ベクトル*: 数を縦または横に並べたもの 6
10 5 0 10 5 甘 さ 辛さ 1 2
3 Aliceの好みの辛さ、甘さは? 好みのアイテムのベクトルの平均 ユーザプロファイル ユーザの嗜好を表したもの 7
10 5 0 10 5 甘 さ 辛さ 6 7
8 問題 | Aliceはどれが好き? 8
10 5 0 10 5 甘 さ 辛さ 6 7
8 ベクトルのなす角を考えよう コサイン類似度 ベクトルのなす角* *数学II:三角関数、*数学B -> 数学C:ベクトル 9
10 5 0 10 5 甘 さ 辛さ 6 7
8 演習 | 他のコサイン類似度も計算してみよう 10
コサイン類似度が高いとどうなの? コサイン類似度が1に近いほど、二つのベクトルが同じ方向を向いている 類似している 11
10 5 0 10 5 甘 さ 辛さ 6 7
8 順位 アイテムID アイテム名 辛さ 甘さ 類似度 1位 8 8辛6甘 8 6 2位 6 3辛4甘 3 4 3位 7 1辛7甘 1 7 コサイン類似度でランキング Aliceには 8辛6甘カレーがおすすめ 12
k 近傍法 13
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 近傍のアイテムから好き嫌いを予測してみよう このあたりは好き? このあたりは嫌い? 14
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍のアイテムはどれ? 15
10 5 0 10 5 甘 さ 辛さ 3 7
距離を考えよう 2点間の距離* *数学II:図形と方程式 16
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 演習 | 他の距離も計算してみよう 17
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍 k 個のアイテムを見つけよう(k = 3) アイテムID アイテム名 辛さ 甘さ 距離 4 2辛8甘 2 8 5 4辛9甘 4 9 2 4辛4甘 4 4 3 3辛3甘 3 3 1 5辛3甘 5 3 18
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍 k 個のアイテムで多数決 好き × 1 vs. 嫌い × 2 Aliceは1辛7甘カレーが嫌い 19
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 演習 | 他のアイテムの好き嫌いも予測してみよう 好き × 嫌い × 3辛4甘カレー 好き × 嫌い × 8辛6甘カレー 20
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 k 近傍法でランキング Aliceには 3辛4甘カレーがおすすめ 順位 アイテムID アイテム名 辛さ 甘さ 好き 嫌い 1位 6 3辛4甘 3 4 3 0 2位 8 8辛6甘 8 6 2 1 21