Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Genetic Algorithms
Search
Luke Williams
July 16, 2020
Science
0
82
Genetic Algorithms
Solving problems the natural way
Luke Williams
July 16, 2020
Tweet
Share
More Decks by Luke Williams
See All by Luke Williams
Useful Mental Models For Product Engineers
redroot
0
130
Unity Talk
redroot
0
37
Neural Networks - a brief introduction by a fan
redroot
0
460
Web Accessibility in 2019
redroot
0
490
redux-saga
redroot
0
590
Redis - Lightning Talk @ RefME
redroot
0
750
Wordpress Multitenancy
redroot
0
1.5k
Embracing the Customizer
redroot
2
760
Other Decks in Science
See All in Science
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
研究って何だっけ / What is Research?
ks91
PRO
1
150
データマイニング - ノードの中心性
trycycle
PRO
0
310
データベース01: データベースを使わない世界
trycycle
PRO
1
880
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
880
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
410
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
120
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
580
2025-06-11-ai_belgium
sofievl
1
200
Ignite の1年間の軌跡
ktombow
0
170
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
390
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Unsuck your backbone
ammeep
671
58k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Building Applications with DynamoDB
mza
96
6.8k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
It's Worth the Effort
3n
187
29k
How GitHub (no longer) Works
holman
315
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Optimizing for Happiness
mojombo
379
70k
KATA
mclloyd
PRO
32
15k
Transcript
Genetic Algorithms Solving problems the natural way
Making Decisions - go to the market?
Making decisions - which car to buy?
Making decisions - mimic art? wizardry! 50 semi transparent shapes
Mona Lisa
Designing a car by mistake
Under the hood Candidates Genome Fitness List of candidate solutions
to the problem. “Genetic” code for each candidate that describes the characteristics that will “evolve” How to determine the “fittest” candidates
Under the hood Candidates Genome Fitness 14aF2bdz12 9avg2bc1sd 44bg92jcks 120m
90m 1m
Under the hood 14aF2bdz12 shape wheel size wheel position wheel
density chasis density
Under the hood Candidates Genome Fitness 14aF2bdz12 14aG2bdz12 25aF2cdz12 ?
? ?
Under the hood Candidates Genome Fitness 14aF2bdz12 14aF2bc1td ? ?
? 9avg2bc1sd
Under the hood Clone/mate to build the next generation Find
the fittest candidate(s) Randomly mutate the genome Build all candidates in generation
In the wild
In the wild
In the wild - Flight / train scheduling - Timetabling
- e.g at a school - Factory floor design - Mechanical engineering - Music production - Financial modelling - Code-breaking - Artificial Intelligence
Genetic Algorithms Solving problems the natural way