Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Rooting Every Android From Extension To Exploit...

Di Shen
November 03, 2016

Rooting Every Android From Extension To Exploitation

Android WEXT attack surface analysis & details of three rooting exploits once affected most Android devices

Di Shen

November 03, 2016
Tweet

More Decks by Di Shen

Other Decks in Research

Transcript

  1. Rooting Every Android : From extension to exploitation Di Shen

    a.k.a. Retme (@returnsme), James Fang (@idl3r) Keen Lab of Tencent
  2. About us • Part of Keen Lab • Interested in

    Android kernel security • Mostly the offensive part • Responsible for many PHAs (non-malicious rooting) • PingPong root (CVE-2015-3636) • 1st public CVE-2015-1805 PoC (Dec 2015) • Multiple device specific root
  3. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  4. Wi-Fi chipsets for Android • Still Linux underneath • Wireless

    Extension • Designed by Jean Tourrilhes in 1997 • “… a wireless API which would allow the user to manipulate any wireless networking device in a standard and uniform way” • Implemented by all major wireless solution vendors • Will be replaced by cfg80211 with backward compatibility • Doesn’t mean cfg80211 has fewer bugs
  5. WEXT Attack Surface Analysis • Wireless Extension interfaces • Procfs

    node: /proc/net/wireless • Mostly a status query interface • Everyone’s favorite ioctl • Set/get configuration parameters • Issue commands root@xxx:/proc/net # cat wireless Inter-| sta-| Quality | Discarded packets | Missed | WE face | tus | link level noise | nwid crypt frag retry misc | beacon | 22 wlan0: 0000 0 0 0 0 0 0 0 0 0 p2p0: 0000 0 0 0 0 0 0 0 0 0
  6. WEXT Attack Surface Analysis (cont.) • Ioctl can be issued

    on socket file descriptors • Ioctl command range: SIOCIWFIRST – SIOCIWLAST • Typical range 0x8B00 ~ 0x8BFF • Odd (quote) rule for get/set commands • Merely any other access control • Before Google starting to take action • “These wireless extensions are not magic : each driver has to provide support for them...” ——/include/uapi/linux/wireless.h /* Odd : get (world access), even : set (root access) */ #define IW_IS_SET(cmd) (!((cmd) & 0x1)) #define IW_IS_GET(cmd) ((cmd) & 0x1)
  7. if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) return wext_handle_ioctl(net,

    &ifr, cmd, arg); #ifdef CONFIG_WEXT_CORE if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { err = dev_ioctl(net, cmd, argp); } else #endif WEXT Attack Surface Analysis (cont.) sys_ioctl do_vfs_ioctl vfs_ioctl socket_file_ops unlocked_ioctl sock_ioctl security_file_ioctl (LSM Hook) Selinux Policy dev_ioctl wext_handle_ioctl wext_ioctl_dispatch static int wext_permission_check(unsigned int cmd) { if ((IW_IS_SET(cmd) || cmd == SIOCGIWENCODE || cmd == SIOCGIWENCODEEXT) && !capable(CAP_NET_ADMIN)) return -EPERM; return 0; } wireless_process_ioctl Driver
  8. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  9. Case study 1 – CVE-2015-0570 • Reported by Renjia Lu(路人甲,

    aka. anonymous) • CVE-2015-0570 • Advisory: https://www.codeaurora.org/projects/security- advisories/multiple-issues-wlan-driver-allow-local-privilege- escalation-cve-2015 • Also fixed bugs caused by wrong cmd id (“odd” for set) int *value = (int *)extra; + if (!capable(CAP_NET_ADMIN)) { + VOS_TRACE(VOS_MODULE_ID_HDD, VOS_TRACE_LEVEL_ERROR, + FL("permission check failed")); + return -EPERM; + } + if (wlan_hdd_validate_operation_channel(adapter, value[0]) !=
  10. Wait a Minute! • Don’t we have stack protection? •

    -fstack-protector is not as good as we thought • -fstack-protector-strong vs. -fstack-protector vs. -fstack-protector-all • -fstack-protector protects only ~2% of the functions • Overhead of -fstack-protector-all is too high for kernel • -fstack-protector-strong was recommended by Qualcomm and Google after this incident • http://android-developers.blogspot.com/2016/07/protecting-android-with- more-linux.html • Requires GCC 4.9+ • https://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html
  11. The Vulnerability • Structure not triggering stack protection • Stack

    overflow in function wlan_hdd_set_filter • Following data copy loop didn’t check data length struct PacketFilterParamsCfg { uint8_t protocolLayer; uint8_t cmpFlag; uint8_t dataOffset; uint8_t dataLength; uint8_t compareData[8]; uint8_t dataMask[8]; } typedef struct { uint8_t filterAction; uint8_t filterId; uint8_t numParams; struct PacketFilterParamsCfg paramsData [5]; }tPacketFilterCfg, *tpPacketFilterCfg; int wlan_hdd_set_filter(hdd_context_t *pHddCtx, tpPacketFilterCfg pRequest, tANI_U8 sessionId) { tSirRcvPktFilterCfgType packetFilterSetReq = {0}; ... switch (pRequest->filterAction) { case HDD_RCV_FILTER_SET: ... for (i=0; i < pRequest->numParams; i++) { ... packetFilterSetReq.paramsData[i].dataLength = pRequest->paramsData[i].dataLength; ... memcpy(&packetFilterSetReq.paramsData[i].compareData, pRequest->paramsData[i].compareData, pRequest->paramsData[i].dataLength); memcpy(&packetFilterSetReq.paramsData[i].dataMask, pRequest->paramsData[i].dataMask, pRequest->paramsData[i].dataLength); ... } ... } return 0; }
  12. How to Exploit • Data flow is very straightforward •

    Fully controllable from user space • ioctl arg -> ifr (dev_ioctl) -> iwr (wireless_process_ioctl) -> tpPacketFilterCfg • Old school stack overflow exploit • Giving calculated data length • Filling the buffer with crafted data to overwrite LR • Construct JOP chain to defeat PXN • Mandatory on all Qualcomm arm64 devices • No RWX direct mapped pages (aka. Not Mediatek ;-)) • Not an easy one • Controlling X29 and X19 instead of conventional ones • Used a modified Ropper (@s4sh_s) to generate gadgets and search for a chain • https://github.com/idl3r/Ropper
  13. How to Exploit (cont.) • Step 1: A pivot gadget

    (X19, X29 -> X0, X1) • Step 2: Conventional gadget sets for SP leak and addr_limit overwrite bin_page_mkwrite: A1 1F 40 F9 LDR X1, [X29,#0x38] E0 03 14 AA MOV X0, X20 60 02 3F D6 BLR X19 shm_sync: 05 08 40 F9 LDR X5, [X0,#0x10] A0 14 40 F9 LDR X0, [X5,#0x28] 04 38 40 F9 LDR X4, [X0,#0x70/0x78] A0 02 80 12 MOV W0, #0xFFFFFFEA 64 00 00 B4 CBZ X4, loc_FFFFFFC0003DFB10 E0 03 05 AA MOV X0, X5 80 00 3F D6 BLR X4 snd_pcm_common_ioctl1: 03 08 40 F9 LDR X3, [X0,#0x10] E0 03 1C AA MOV X0, X28 60 00 3F D6 BLR X3 __spi_async: 20 08 00 F9 STR X0, [X1,#0x10] 22 34 00 B9 STR W2, [X1,#0x34] A2 78 41 F9 LDR X2, [X5,#0x2F0/0x380] 40 00 3F D6 BLR X2 shm_sync: 05 08 40 F9 LDR X5, [X0,#0x10] A0 14 40 F9 LDR X0, [X5,#0x28] 04 38 40 F9 LDR X4, [X0,#0x70/0x78] A0 02 80 12 MOV W0, #0xFFFFFFEA 64 00 00 B4 CBZ X4, loc_FFFFFFC0003DFB10 E0 03 05 AA MOV X0, X5 80 00 3F D6 BLR X4 df_bcc_func: 03 04 40 F9 LDR X3, [X0,#8] 00 18 40 F9 LDR X0, [X0,#0x30] 60 00 3F D6 BLR X3 __spi_async: 20 08 00 F9 STR X0, [X1,#0x10] 22 34 00 B9 STR W2, [X1,#0x34] A2 78 41 F9 LDR X2, [X5,#0x2F0/2F8/380] 40 00 3F D6 BLR X2
  14. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  15. Case study 2 - CVE-2016-0820 • Data section overflow in

    MediaTek WEXT • Discovered by KeenLab in Oct.2015 but not reported at that time • Obviously exploitable, NO hardcoded kernel symbol is needed • The exploit was finished in two days. • Reported to Google by another researcher Mark Brand of Google P0 in Dec. 2015 • Affected all mediatek-based devices.
  16. Case study 2 - The overflow • No boundary protection

    of the copy length when priv_get_struct call copy_from_user() • Destination: aucOidbuf has 4096 bytes in data section • prIwReqData->data.length is provided by user, may be any value. 1437 case PRIV_CMD_SW_CTRL: 1438 pu4IntBuf = (PUINT_32)prIwReqData->data.pointer; 1439 prNdisReq = (P_NDIS_TRANSPORT_STRUCT) &aucOidBuf[0]; 1440 //kalMemCopy(&prNdisReq->ndisOidContent[0], prIwReqData->data.pointer, 8); 1441 if (copy_from_user(&prNdisReq->ndisOidContent[0], 1442 prIwReqData->data.pointer, 1443 prIwReqData->data.length)) { 1444 status = -EFAULT; 1445 break; 1446 } drivers/misc/mediatek/connectivity/combo/drv_wlan/mt6628/wlan/os/linux/gl_wext_priv.c
  17. Case study 2 – How to exploit • Overwriting a

    global function pointer located behind aucOidbuf to achieve kernel code execution • Corrupting unrelated global variables as little as possible to avoid a kernel crash. • The offset of pfWlanRemove is unknown • To meet these requirements,firstly leaking the value of variables behind aucOidbuf is necessary. Unrelated variables int8 aucOidbuf[4096] .data ffffffc0010be928 ~ ffffffc0010c0228 pfWlanRemove pfWlanProbe Overwrite this ptr
  18. Case study 2 – Leaking the value 1097 case PRIV_CMD_GET_DEBUG_CODE:

    1098 { 1099 wlanQueryDebugCode(prGlueInfo->prAdapter); 1100 kalMemSet(gucBufDbgCode, '.', sizeof(gucBufDbgCode)); 1101 if (copy_to_user(prIwReqData->data.pointer, gucBufDbgCode, prIwReqData->data.length)) { 1102 return -EFAULT; 1103 } 1104 else 1105 return status; 1106 } • Another command PRIV_CMD_GET_DEBUG_CODE completed the task perfectly… • No boundary check when call copy_to_user , data leaked. • Now we get the value of variables behind gucBufDbgCode which is a variable just behind aucOidbuf drivers/misc/mediatek/connectivity/combo/drv_wlan/mt6628/wlan/os/linux/gl_wext_priv.c
  19. Case study 2 – kernel code execution • Copy shellcode

    to pages allocated in user space • Get the direct mapped address of these pages in kernel (ret2dir), pages are EXECUTABLE in kernel space on MTK devices • Overwrite plWlanRemove with kernel address of shellcode • Call Java API wifi.setWifiEnabled(false) so that system process “mtk_wmtd” may call plWlanRemove to execute shellcode in kernel space • Gain root and recover every modified global variables
  20. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  21. Case study 3 – The Broadcom bugs • Use-after-free due

    to race condition • Much complicated than previous two case • The window is small, need to refill the freed object in very short time • Two separated issue • CVE-2016-2475: A lack of privilege check while processing WEXT ioctl cmd for Android. • Android-ID-24739315: Use-after-free when call wl_android_wifi_off concurrently • Affected all premium-end Android phone like Samsung Galaxy series, Huawei Mate series, Google Nexus 6p,etc.
  22. Case study 3 – Discover the bug • Discovered by

    running test code while pressing Wi-Fi button on and off repeatedly and crazily • And then kernel crashed and the crash is reproducible… • Analyzed the crash and found a UAF bug!
  23. Trigger a crash 1 <1>[ 872.503389] Unable to handle kernel

    NULL pointer dereference at virtual address 0000004c 2 <1>[ 872.503400] pgd = ffffffc0565ab000 3 <1>[ 872.503408] [0000004c] *pgd=0000000000000000 4 <0>[ 872.503429] Internal error: Oops: 96000005 [#1] PREEMPT SMP 5 <4>[ 872.503444] CPU: 2 PID: 7137 Comm: Thread-128 Tainted: G W 3.10.73- g42d0df9-dirty #111 6 <4>[ 872.503456] task: ffffffc02c248ac0 ti: ffffffc056bf4000 task.ti: ffffffc056bf4000 7 <4>[ 872.503469] PC is at sb_corereg+0x228/0x34c 8 <4>[ 872.503481] LR is at sb_corereg+0x110/0x34c 9 <4>[ 872.503489] pc : [<ffffffc0006632d4>] lr : [<ffffffc0006631bc>] pstate: 80000145 10 <4>[ 872.503497] sp : ffffffc056bf7aa0 11 <4>[ 872.503505] x29: ffffffc056bf7aa0 x28: ffffffc058ae1100 12 <4>[ 872.503521] x27: 0000000000000000 x26: 0000000000000000 13 <4>[ 872.503536] x25: 0000000000ab0300 x24: 00000000ff54fcff 14 <4>[ 872.503553] x23: 0000000000000003 x22: ffffffc0ac815000 15 <4>[ 872.503570] x21: 0000000000000000 x20: 000000000000004c 16 <4>[ 872.503586] x19: 000000000000004c x18: 0000000000000005 17 <4>[ 872.503602] x17: 0000000000000084 x16: 0000000000000001 18 <4>[ 872.503618] x15: 0000000000000000 x14: 747562732220656c 19 <4>[ 872.503633] x13: 6966203a22295d78 x12: 646965726f635b73 20 <4>[ 872.503650] x11: 6765723e2d6f666e x10: 695f7365726f6328 21 <4>[ 872.503666] x9 : 53474552444f4f47 x8 : 22205d3536333330 22 <4>[ 872.503682] x7 : 352e32373820205b x6 : ffffff8001b62815 23 <4>[ 872.503698] x5 : ffffff8000980000 x4 : 0000000000000000 24 <4>[ 872.503713] x3 : 0000000000000000 x2 : ffffffc056bf4000 25 <4>[ 872.503728] x1 : 000000000000 26 0001 x0 : 0000000000000001 27 <4>[ 872.503756] 28 <0>[ 872.503766] Process Thread-128 (pid: 7137, stack limit = 0xffffffc056bf4060) 29 <4>[ 872.503775] Call trace: 30 <4>[ 872.503786] [<ffffffc0006632d4>] sb_corereg+0x228/0x34c 31 <4>[ 872.503797] [<ffffffc0006649d4>] si_corereg+0x14/0x68 32 <4>[ 872.503810] [<ffffffc00069a430>] dhdpcie_bus_intr_disable+0x7c/0xb8 33 <4>[ 872.503822] [<ffffffc00069d8fc>] dhd_bus_devreset+0x124/0x3c4 34 <4>[ 872.503834] [<ffffffc0006531ec>] dhd_net_bus_devreset+0x8c/0xd4 35 <4>[ 872.503846] [<ffffffc000668224>] wl_android_wifi_off+0x98/0xd0 36 <4>[ 872.503859] [<ffffffc000656bc0>] dhd_stop+0x6c/0x17c 37 <4>[ 872.503870] [<ffffffc000add678>] __dev_close_many+0x98/0xc0 38 <4>[ 872.503882] [<ffffffc000add6c4>] __dev_close+0x24/0x40 39 <4>[ 872.503894] [<ffffffc000ae0b90>] __dev_change_flags+0xb8/0x13c 40 <4>[ 872.503906] [<ffffffc000ae0c90>] dev_change_flags+0x18/0x5c 41 <4>[ 872.503920] [<ffffffc000b724c4>] devinet_ioctl+0x31c/0x690 42 <4>[ 872.503931] [<ffffffc000b73af0>] inet_ioctl+0xc4/0xf4 43 <4>[ 872.503944] [<ffffffc000ac8920>] sock_do_ioctl+0x2c/0x5c 44 <4>[ 872.503956] [<ffffffc000ac8dc8>] sock_ioctl+0x208/0x228 45 <4>[ 872.503969] [<ffffffc00030f728>] do_vfs_ioctl+0x48c/0x564 46 <4>[ 872.503981] [<ffffffc00030f85c>] SyS_ioctl+0x5c/0x88 • Thread-128 is the name of binder thread in system_server • UAF due to race condition
  24. First issue: Expose a surface for attacker 1 static int

    dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd) 2 { 3 4 ...snip... 5 6 if (cmd == SIOCDEVPRIVATE+1) { //position 1 7 ret = wl_android_priv_cmd(net, ifr, cmd); 8 dhd_check_hang(net, &dhd->pub, ret); 9 DHD_OS_WAKE_UNLOCK(&dhd->pub); 10 return ret; 11 } 12 13 if (cmd != SIOCDEVPRIVATE) { 14 DHD_PERIM_UNLOCK(&dhd->pub); 15 DHD_OS_WAKE_UNLOCK(&dhd->pub); 16 return -EOPNOTSUPP; 17 } 18 19 ...snip... 20 21 if (!capable(CAP_NET_ADMIN)) { //position 2 22 bcmerror = BCME_EPERM; 23 goto done; 24 } 25 26 ...snip... 27 28 bcmerror = dhd_ioctl_process(&dhd->pub, ifidx, &ioc, local_buf); • CVE-2016-2475 • wl_android_priv_cmd is able to be called with insufficient privileges Permission check, but too late Progressing SIOCDEVPRIVATE+1 without a check This issue was discovered by Keenlab in Nov. 2015, firstly reported to Google by anonymous researcher in Jan. 2016.
  25. A large number of commands can be progressed here… 1

    int wl_android_priv_cmd(struct net_device *net, struct ifreq *ifr, int cmd){ 2 ...snip... 3 if (strnicmp(command, CMD_START, strlen(CMD_START)) == 0) { 4 bytes_written = wl_android_wifi_on(net); 5 } 6 else if (strnicmp(command, CMD_SETFWPATH, strlen(CMD_SETFWPATH)) == 0) { 7 bytes_written = wl_android_set_fwpath(net, command, priv_cmd.total_len); 8 } 9 if (!g_wifi_on) { 10 ret = 0; 11 goto exit; 12 } 13 if (strnicmp(command, CMD_STOP, strlen(CMD_STOP)) == 0) { 14 bytes_written = wl_android_wifi_off(net, FALSE); 15 } 16 else if (strnicmp(command, CMD_SCAN_ACTIVE, strlen(CMD_SCAN_ACTIVE)) == 0) { 17 ...snip... 18 } 19 else if (strnicmp(command, CMD_SCAN_PASSIVE, strlen(CMD_SCAN_PASSIVE)) == 0) { 20 ...snip... 21 } 22 else if (strnicmp(command, CMD_RSSI, strlen(CMD_RSSI)) == 0) { 23 ...snip... 24 } 25 ...snip... 26 return ret; 27 } • Any local application can use CMD_START / CMD_STOP to enable or disable Wi-Fi devices directly. • And here comes the second issue , the UAF bug
  26. Android-ID-24739315 • The patch is quite simple. When dhd_bus_devreset is

    called and the state of Wi-Fi bus is down, do not call dhdpcie_bus_intr_disable any more • No CVE assigned, never appeared in Android Security Bulletin, but absolutely exploitable This issue was discovered by Keenlab in Nov. 2015. When we decide to report it in Feb. 2016, we noticed that a patchhas already been released on public repository.
  27. • If two threads call wl_android_wifi_off simultaneously, one of threads

    may reference freed struct si_info . dhd_ioctl_entry wl_android_wifi_off dhd_bus_devreset ioctl(sockfd) busstate == DOWN ? dhd_bus_release_dongle si_detach(bus->sih) N busstate = DOWN dhdpcie_bus_intr_disable si_corereg Y Branch for thread1 Branch for thread2 bus->sih is freed by thread 1
  28. How to trigger • Unfortunately two threads can’t invoke wl_android_priv_cmd

    concurrently because dhd_ioctl_entry is locked. • Any other solution? 1 static int 2 dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd) 3 { 4 dhd_info_t *dhd = DHD_DEV_INFO(net); 5 dhd_ioctl_t ioc; 6 int bcmerror = 0; 7 int ifidx; 8 int ret; 9 void *local_buf = NULL; 10 u16 buflen = 0; 11 12 DHD_OS_WAKE_LOCK(&dhd->pub); 13 DHD_PERIM_LOCK(&dhd->pub); 14 ..snip.. 15 if (cmd == SIOCDEVPRIVATE+1) { 16 ret = wl_android_priv_cmd(net, ifr, cmd); 17 dhd_check_hang(net, &dhd->pub, ret); 18 DHD_OS_WAKE_UNLOCK(&dhd->pub); 19 return ret; 20 } 21 ..snip.. 22 done: 23 if (local_buf) 24 MFREE(dhd->pub.osh, local_buf, buflen+1); 25 26 DHD_PERIM_UNLOCK(&dhd->pub); 27 DHD_OS_WAKE_UNLOCK(&dhd->pub); 28 }
  29. How to trigger • Is there a another way to

    invoke wl_android_wifi_off ? • Yes. devnet_ioctl(sockfd,SIOCSIFFLAGS) -> __dev_change_flags -> __dev_close -> dhd_stop -> wl_android_wifi_off • Is SIOCSIFFLAGS able to be invoked by unprivileged process? • No… A CAP_NET_ADMIN is needed to do that. • Is there any privileged process can do us a favor? • Yes. system_server is ready to serve! • Ask system_server via binder IPC to invoke devnet_ioctl(sockfd,SIOCSIFFLAGS) and trigger the UAF.
  30. Binder thread of system_server WMS.setWiFistate ioctl(fd,SIOCSIFFLAGS) dhd_stop __dev_change_flags __dev_close wl_android_wifi_off

    dhdpcie_bus_intr_disable Thread of attacker process ioctl(fd,SIOCDEVPRIVATE+1) dhd_ioctl_entry si_detach wl_android_wifi_off dhd_bus_devreset ATTACKER Binder IPC • The UAF is caused by a race condition • To trigger the UAF, the binder thread have to enter wl_android_wifi_off soon after attacker’s thread enter it. • The window is small.
  31. • si_info->intrsoff_fn is the crafted function pointer I can control

    1 void 2 dhdpcie_bus_intr_disable(dhd_bus_t *bus) 7 if (bus) { 8 9 if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) || 10 (bus->sih->buscorerev == 4)) { 11 dhpcie_bus_mask_interrupt(bus); 12 } 13 else if (bus->sih) { 14 si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask, 15 bus->def_intmask, 0); 16 } 17 } 19 } 1 uint 2 si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) 3 { 4 if (CHIPTYPE(sih->socitype) == SOCI_SB) 5 return sb_corereg(sih, coreidx, regoff, mask, val); 6 else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI)) 7 return ai_corereg(sih, coreidx, regoff, mask, val); 8 else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) 9 return ub_corereg(sih, coreidx, regoff, mask, val); 10 else { 11 ASSERT(0); 12 return 0; 13 } 14 } 1 uint sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) 2 { 3 ...snip... 4 5 if (BUSTYPE(sii->pub.bustype) == SI_BUS) { 6 fast = TRUE; 7 ...snip... 8 } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { 9 fast = TRUE; 10 ...snip... 11 } 12 13 if (!fast) { 14 INTR_OFF(sii, intr_val); #define INTR_OFF(si, intr_val) \ if ((si)->intrsoff_fn && (cores_info)->coreid[(si)->curidx]\ == (si)->dev_coreid) { \ intr_val = (*(si)-> intrsoff_fn)((si)->intr_arg); } buscorerev != 2,4,6 socitype == SOCI_SB bustype != SI_BUS,PCI_BUS • bus->sih is the freed si_info
  32. But how small the window is! 1 <4>[ 872.481513] si_detach

    free si ffffffc058ae1100;cores_info ffffffc0ac815000 2 <4>[ 872.481526] dhdpcie_bus_release_dongle Exit 3 <4>[ 872.481574] dhdpcie_stop_host_pcieclock Enter: 4 <6>[ 872.496619] msm_pcie_disable: PCIe: Assert the reset of endpoint of RC1. 5 <4>[ 872.501069] dhdpcie_stop_host_pcieclock Exit: 6 <4>[ 872.501081] dhd_bus_devreset: WLAN OFF Done 7 <4>[ 872.501094] wifi_platform_set_power = 0 8 <6>[ 872.501104] dhd_wlan_power Enter: power off 9 <4>[ 872.501383] __dev_change_flags dev: wlan0 flags 1042 10 <4>[ 872.501598] dhd_deferred_work_handler: event to handle 24 11 <4>[ 872.501615] dhd_set_mcast_list_handler: interface info not available/down 12 <4>[ 872.501626] dhd_deferred_work_handler: event to handle 0 13 <4>[ 872.501634] dhd_deferred_work_handler: No event to handle 0 14 <4>[ 872.502660] dhd_stop: Enter ffffffc0b11d5000 15 <4>[ 872.502672] wl_android_wifi_off in 16 <4>[ 872.502684] dhd_prot_ioctl : bus is down. we have nothing to do 17 <4>[ 872.502695] dhd_net_bus_devreset: wl down failed 18 <4>[ 872.502704] dhd_bus_devreset: == Power OFF == 19 <4>[ 872.502715] dhdpcie_bus_intr_disable Enter 20 <4>[ 872.502760] sb_corereg sii ffffffc058ae1100,cores_info ffffffc0ac815000 • Freed at 872.481513 • Used at 872.592760 • You have only 0.02s to re-fill the object…
  33. Racing and object re-filling • If racing failed • Nothing

    happened, try again • If racing succeeded, but re-filling failed • Crash ): • Need a way to spray kernel heap efficiently and quickly • And also, in this case we’d better fully control the data and length of the re-filled objects
  34. Heap spraying by sendmmsg 1 struct msghdr { 2 void

    * msg_name; /* Socket name */ 3 int msg_namelen; /* Length of name */ 4 struct iovec * msg_iov; /* Data blocks */ 5 __kernel_size_t msg_iovlen; /* Number of blocks */ 6 void * msg_control; /* Per protocol magic (eg BSD file descriptor passing) */ 7 __kernel_size_t msg_controllen; /* Length of cmsg list */ 8 unsigned int msg_flags; 9 }; • Create a TCP socket, two processes as server and client • Send bytes over a TCP connection using sendmmsg • Let msghdr->msg_control point to the content you want to spray in kernel. • As server never respond the sendmsg request from client, the kernel buffer of msg_control will permanently stay in kmalloc heap.
  35. Heap spraying by sendmmsg • It has a 90% success

    rate to re-fill the freed object in 0.02s. • The data and length of sprayed object can be fully controlled. • Fortunately the freed si_info is allocated in kmalloc-256. • This approach will be not working if the object is located in kmalloc-512. • Sendmmsg will allocate other 512-sized object as an interference with spraying.
  36. Happy rooting • Now you have kernel code execution •

    Build JOP gadgets • Manipulate credential of you task • Disable SELinux • Bypass some vendor specific mitigations
  37. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  38. Google’s latest mitigation • CVE-2016-0820 drove Google to reduce socket

    ioctl permissions further • The same BUG ID with CVE-2016-0820
  39. Restrictions by SELinux policy See also: Ioctl command whitelisting with

    SELinux • Only a limited set of ioctls are allowed to invoke by unprivileged process. • WEXT ioctls were removed from the set • SELinux denied message avc: denied { ioctl } for pid=8567 comm="poc" path="socket:[156925]" dev="sockfs" ino=156925 ioctlcmd=89f1 scontext=u:r:shell:s0 tcontext=u:r:shell:s0 tclass=tcp_socket permissive=0
  40. Agenda • Overview • Wi-Fi chipsets for Android • WEXT

    Attack Surface Analysis • Use device specific vulnerabilities to root them all • Case Studies • Stack overflow vulnerability in Qualcomm WEXT • Data section overflow vulnerability in MTK WEXT • Use-After-Free vulnerability in Broadcom WEXT • Google’s latest mitigation • Conclusion
  41. Conclusion • Once an awesome attack surface on Android kernel

    • Vendor code is still buggy • Google really did a good job on surface reduction in 2016 • “Protecting Android with more Linux kernel defenses” • Rooting Android is becoming more and more challenging • Mining another little known attack surface • Discovering another memory corruption vulnerability in generic syscall • Compromising a privileged process first (another hard work..)