Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making Deployments Easy with TF Serving | TF Ev...
Search
Rishit Dagli
May 11, 2021
Programming
1
160
Making Deployments Easy with TF Serving | TF Everywhere India
My talk at TensorFlow Everywhere India
Rishit Dagli
May 11, 2021
Tweet
Share
More Decks by Rishit Dagli
See All by Rishit Dagli
Fantastic Models and Where to Find Them
rishitdagli
0
78
Plant AI: Project Showcase
rishitdagli
0
120
Deploying an ML Model as an API | Postman Student Summit
rishitdagli
0
90
APIs 101 with Postman
rishitdagli
0
80
Deploying Models to production with Azure ML | Scottish Summit
rishitdagli
1
88
Computer Vision with TensorFlow, Getting Started
rishitdagli
0
290
Teaching Your Models to Play Fair | Global AI Student Conf
rishitdagli
1
170
Deploying Models to Production with TF Serving
rishitdagli
1
200
Superpower Your Android apps with ML: Android 11 | Devfest 2020
rishitdagli
1
82
Other Decks in Programming
See All in Programming
11年かかって やっとVibe Codingに 時代が追いつきましたね
yimajo
1
260
令和最新版手のひらコンピュータ
koba789
13
7.4k
バイブスあるコーディングで ~PHP~ 便利ツールをつくるプラクティス
uzulla
1
330
大規模FlutterプロジェクトのCI実行時間を約8割削減した話
teamlab
PRO
0
460
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
860
Amazon Q CLI開発で学んだAIコーディングツールの使い方
licux
3
180
それ CLI フレームワークがなくてもできるよ / Building CLI Tools Without Frameworks
orgachem
PRO
17
3.8k
Flutterと Vibe Coding で個人開発!
hyshu
1
250
DataformでPythonする / dataform-de-python
snhryt
0
160
Constant integer division faster than compiler-generated code
herumi
2
580
0から始めるモジュラーモノリス-クリーンなモノリスを目指して
sushi0120
0
280
Google I/O Extended Incheon 2025 ~ What's new in Android development tools
pluu
1
260
Featured
See All Featured
How to Ace a Technical Interview
jacobian
278
23k
Rails Girls Zürich Keynote
gr2m
95
14k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Designing for Performance
lara
610
69k
A Modern Web Designer's Workflow
chriscoyier
695
190k
We Have a Design System, Now What?
morganepeng
53
7.7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building an army of robots
kneath
306
45k
Docker and Python
trallard
45
3.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Language of Interfaces
destraynor
158
25k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Transcript
Making Deployments Easy with TF Serving Rishit Dagli High School
TEDx, TED-Ed Speaker rishit_dagli Rishit-dagli
“Most models don’t get deployed.”
of models don’t get deployed. 90%
Source: Laurence Moroney
Source: Laurence Moroney
• High School Student • TEDx and Ted-Ed Speaker •
♡ Hackathons and competitions • ♡ Research • My coordinates - www.rishit.tech $whoami rishit_dagli Rishit-dagli
• Devs who have worked on Deep Learning Models (Keras)
• Devs looking for ways to put their model into production ready manner Ideal Audience
Why care about ML deployments? Source: memegenerator.net
None
• Package the model What things to take care of?
• Package the model • Post the model on Server
What things to take care of?
• Package the model • Post the model on Server
• Maintain the server What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability Latency What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API • Model Versioning What things to take care of?
Simple Deployments Why are they inefficient?
None
Simple Deployments Why are they inefficient? • No consistent API
• No model versioning • No mini-batching • Inefficient for large models Source: Hannes Hapke
TensorFlow Serving
TensorFlow Serving TensorFlow Data validation TensorFlow Transform TensorFlow Model Analysis
TensorFlow Serving TensorFlow Extended
• Part of TensorFlow Extended TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
• Makes deployment a lot easier TensorFlow Serving
The Process
• The SavedModel format • Graph definitions as protocol buffer
Export Model
SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory Variables
auxiliary files e.g. vocabularies SavedModel Directory Variables Graph definitions
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving Also supports gRPC
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
Inference
• Consistent APIs • Supports simultaneously gRPC: 8500 REST: 8501
• No lists but lists of lists Inference
• No lists but lists of lists Inference
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict Port Model name
Inference with REST
• Better connections • Data converted to protocol buffer •
Request types have designated type • Payload converted to base64 • Use gRPC stubs Inference with gRPC
Model Meta Information
• You have an API to get meta info •
Useful for model tracking in telementry systems • Provides model input/ outputs, signatures Model Meta Information
Model Meta Information http://{HOST}:8501/ v1/models/{MODEL_NAME} /versions/{MODEL_VERSION} /metadata
Batch Inferences
• Use hardware efficiently • Save costs and compute resources
• Take multiple requests process them together • Super cool😎 for large models Batch inferences
• max_batch_size • batch_timeout_micros • num_batch_threads • max_enqueued_batches • file_system_poll_wait
_seconds • tensorflow_session _paralellism • tensorflow_intra_op _parallelism Batch Inference Highly customizable
• Load configuration file on startup • Change parameters according
to use cases Batch Inference
Also take a look at...
• Kubeflow deployments • Data pre-processing on server🚅 • AI
Platform Predictions • Deployment on edge devices • Federated learning Also take a look at...
bit.ly/tf-everywhere-ind Demos!
bit.ly/serving-deck Slides
Thank You rishit_dagli Rishit-dagli