Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
iclr2020deepsemi-supervisedanomalydetectionyama...
Search
Yamato.OKAMOTO
June 14, 2020
Technology
0
130
iclr2020deepsemi-supervisedanomalydetectionyamatookamoto-200531022507.pdf
Yamato.OKAMOTO
June 14, 2020
Tweet
Share
More Decks by Yamato.OKAMOTO
See All by Yamato.OKAMOTO
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.5k
Slide ICCV2023 Constructing Image Text Pair Dataset from Books
roadroller
0
100
第11回 全日本コンピュータビジョン勉強会 CVPR2022 "A Self-Supervised Descriptor for Image Copy Detection"
roadroller
0
630
第9回 全日本コンピュータビジョン勉強会 発表資料
roadroller
0
620
第七回全日本コンピュータビジョン勉強会 A Multiplexed Network for End-to-End, Multilingual OCR
roadroller
1
950
部下のマネジメントはAI開発に学べ
roadroller
0
150
Domain Generalization via Model-Agnostic Learning of Semantic Features NeurIPS’19 読み会 in 京都
roadroller
0
270
ICML’2019 読み会in京都 Federated Learningの研究動向
roadroller
0
100
CVPR2019@Long Beach 参加速報(本会議)
roadroller
0
120
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
30k
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
4
1.7k
実践アプリケーション設計 ①データモデルとドメインモデル
recruitengineers
PRO
2
240
[OCI Skill Mapping] AWSユーザーのためのOCI(2025年8月20日開催)
oracle4engineer
PRO
2
150
Goss: Faiss向けの新しい本番環境対応 Goバインディング #coefl_go_jp
bengo4com
0
1.4k
マイクロモビリティシェアサービスを支える プラットフォームアーキテクチャ
grimoh
1
230
Preferred Networks (PFN) とLLM Post-Training チームの紹介 / 第4回 関東Kaggler会 スポンサーセッション
pfn
PRO
1
190
RAID6 を楔形文字で組んで現代人を怖がらせましょう(実装編)
mimifuwa
0
300
DeNA での思い出 / Memories at DeNA
orgachem
PRO
3
1.6k
LLMエージェント時代に適応した開発フロー
hiragram
1
410
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
390
新規案件の立ち上げ専門チームから見たAI駆動開発の始め方
shuyakinjo
0
120
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Thoughts on Productivity
jonyablonski
69
4.8k
Balancing Empowerment & Direction
lara
2
590
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
A better future with KSS
kneath
239
17k
Facilitating Awesome Meetings
lara
55
6.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Designing Experiences People Love
moore
142
24k
Transcript
2020/6/14 Yamato OKAMOTO ICLRΦϯϥΠϯಡΈձ Deep Semi-supervised Anomaly Detection
ࣗݾհʢ͘!!ʣ ɹԬຊେʢ͓͔ͱ·ͱʣ • ژେֶඒೱݚڀࣨͰύλʔϯೝࣝΛݚڀͯ͠म࢜՝ఔमྃ • ΦϜϩϯͰ৽نࣄۀΛܦݧޙɺ͍·ࣾձγεςϜࣄۀ෦ͷݚڀॴϦʔμʔ • ເژΛϙετɾγϦίϯόϨʔʹ͢Δ͜ͱɺؔͷίϛϡχςΟΛڧԽ͍ͨ͠ ɹ㱺 ژͷมਓύϫʔΛੈքʹΒ͠Ί͍ͨ
Twitter : RoadRoller_DESU ҆৺҆શͳࣾձͷ࣮ݱʹ͚ͯɺ ࠷ۙ Anomaly Detection ʹڵຯΞϦ
Anomaly Detection ͋Δ͋Δ ఆٛࠔ • ҟৗʹ༷ʑͳόϦΤʔγϣϯ͕͋Δ • ҟৗݕग़͍͚ͨ͠ͲʮWhat is ҟৗʁʯ͕ఆٛͰ͖ͳ͍
ֶशσʔλ͕ೖखࠔ • ҟৗ໓ଟʹൃੜ͠ͳ͍ʢ※ සൟʹൃੜ͢ΔΠϕϯτҟৗ͡Όͳ༷ͯ͘ʣ • ѹతʹҟৗσʔλ͕ෆͯ͠ػցֶश͕ࠔ ैདྷख๏ɿਖ਼ৗΛఆٛ͢Δ • ʮWhat is ҟৗʁʯͷఆٛΛఘΊΔɺҟৗσʔλͷֶशఘΊΔ • ͦͷΘΓʮWhat is ਖ਼ৗʁʯͷఆٛΛֶशͯ͠ɺʮNot ਖ਼ৗʯΛҟৗͱఆ͢Δ
Anomaly Detection ͷैདྷݚڀ Deep One-Class Classification (ICML’18) • ਖ਼ৗσʔλͷΈΛ༻͍ͯɺClassifierͳΓAutoEncoderͳΓΛैདྷ௨Γʹֶश •
͜ͷͱ͖ɺಛྔ͕࣍ݩ෦ۭؒʹऩଋ͢ΔΑ͏LOSSΛՃ͑Δ • ਖ਼ৗσʔλͳΒٿʹ͢ΔͣͳͷͰɺٿ͔Β֎ΕͨσʔλΛҟৗͱఆ͢Δ ୈҰ߲ʹΑͬͯٿʹ͕ԡ͠ࠐ·ΕΔ cɿ ٿͷத৺ʢͨͩ͠≠0ʣ nɿֶश͢Δਖ਼ৗσʔλͷ
Anomaly Detection ͷධՁ؍ ͲΕ͚ͩਖ਼֬ʹҟৗΛݕͰ͖͔ͨʁ • ਖ਼ৗσʔλΛਖ਼ৗͱఆͯ͠ɺҟৗσʔλΛҟৗͱఆ͢Δਫ਼ ԼྲྀλεΫΛअຐ͠ͳ͍͔ʁ • ԼྲྀλεΫ͕͋Δ߹ɺҟৗݕػೳͷՃʹΑͬͯѱӨڹ͕ͳ͍͔Ͳ͏͔ •
ྫ͑ɺ10ΫϥεͷࣈࣝผثʹɺਤܗͳͲࣈҎ֎͕ೖྗ͞Εͨͱ͖ҟৗͱఆ͢Δػ ೳΛ͚Ճ͍͑ͨͤͰɺैདྷͷ10Ϋϥεࣝผੑೳ͕Լ͢ΔͱࠔΔ ad-hoc͔post-hoc͔ʁ • ҟৗݕ͢ΔͨΊʹϞσϧߏֶशํ๏·Ͱม͑Δඞཁ͕͋Δ͔ʁ • ·ͨɺLOSSΛޙ͔Β͚͚̍ͭͩͯ͠Ճֶश͢Δ͚ͩͰOK͔ʁ • ͲͪΒ͕ྑ͍ѱ͍ͳͲҰ֓ʹݴ͑ͳ͍͕ɺpost-hocͷํ͕ѻ͍͍͢ɻ
հจͷ֓ཁ ʮSemi-supervisedʹֶश͠Α͏ʂʯ Anomaly Detection ͷݚڀUnsupervised͕ओྲྀͷΑ͏ͩ Ͱɺֶश༻ͷҟৗσʔλ͕ೖखࠔͩͱͯ͠ɺ ӡ༻Λଓ͚ͯͨΒҟৗσʔλʹ͍ͣΕग़ձ͏ͣ ͳΒɺͦΕΒগྔͷҟৗσʔλΛͬͯɺ Semi-supervisedʹֶशͨ͠ํ͕ྑ͍ͷͰʁ ※Semi-supervisedͷAnomaly
Detectionݚڀඇৗʹগͳ͍
ఏҊख๏ ʮLOSSʹ߲Λ̍ͭՃ͠·ͨ͠ʯ Deep One-Class Classification (ICML’18) ͷLOSSʹSemi-supervisedͷ߲Λ̍ͭՃ • ࣮ಉ͡ஶऀͰͨ͠ɻࣗͷݚڀΛࣗͰΞοϓσʔτͨ͠ܗʹͳΔɻ ͠ҟৗσʔλʹग़ձͬͨΒɺ
ٿͷ֎ଆʹߦ͘Α͏ֶश͢Δ mɿsemi-supervisedʹֶश͢Δσʔλ yj ɿਖ਼ৗorҟৗͷϥϕϧ
࣮ݧ݁Ռ ॎ࣠ɿҟৗσʔλͷݕग़ੑೳ ʢHigher is Betterʣ Unsupervised Semi-supervised ԣ࣠ɿSemi-supervisedͰڭࢣ͖ͷҟৗσʔλΛֶशׂͨ͠߹ ఏҊख๏ MNISTɺFashion-MNISTɺCIFAR-10ͷσʔληοτͰධՁ
• ̍Ϋϥεͱਖ਼ৗͱఆٛͯ͠ɺAutoEncoderʴఏҊख๏ͰಛྔදݱΛֶश • Γͷ̕ΫϥεΛೖྗͨ͠ͱ͖ɺҟৗͱఆͰ͖Δ͔Ͳ͏͔ධՁ ੑೳվળΛ֬ೝ
·ͱΊͱߟ ਂֶशʹΑΔ Semi-supervised ͳ Anomaly Detection ख๏ΛఏҊ • ॳΊͯͰͳ͍ͱࢥ͏͕ɺਂֶशʹΑΔAnomaly DetectionͰsemi-supervised͍͠
• ͔ͨ͠ʹࣾձ࣮Λߟ͑Δͱɺ͜ͷઃఆద • ख๏γϯϓϧͰɺpost-hocͳͷͰѻ͍͍͢ • ࠓճԼྲྀλεΫ͕AE͕ͩͬͨɺClassificationͩͱͲ͏ͳΔ͔ʁ • Anomaly DetectionͷධՁσʔληοτͬͯଞʹͳ͍ͷ͔ͳɺɺɺɺ ʢ͍ͭ·ͰMNISTʹΑΔධՁ͕ଓ͘ͷͩΖ͏͔ʣ