Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
iclr2020deepsemi-supervisedanomalydetectionyama...
Search
Yamato.OKAMOTO
June 14, 2020
Technology
0
98
iclr2020deepsemi-supervisedanomalydetectionyamatookamoto-200531022507.pdf
Yamato.OKAMOTO
June 14, 2020
Tweet
Share
More Decks by Yamato.OKAMOTO
See All by Yamato.OKAMOTO
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
Slide ICCV2023 Constructing Image Text Pair Dataset from Books
roadroller
0
61
第11回 全日本コンピュータビジョン勉強会 CVPR2022 "A Self-Supervised Descriptor for Image Copy Detection"
roadroller
0
550
第9回 全日本コンピュータビジョン勉強会 発表資料
roadroller
0
570
第七回全日本コンピュータビジョン勉強会 A Multiplexed Network for End-to-End, Multilingual OCR
roadroller
1
910
部下のマネジメントはAI開発に学べ
roadroller
0
110
Domain Generalization via Model-Agnostic Learning of Semantic Features NeurIPS’19 読み会 in 京都
roadroller
0
210
ICML’2019 読み会in京都 Federated Learningの研究動向
roadroller
0
61
CVPR2019@Long Beach 参加速報(本会議)
roadroller
0
90
Other Decks in Technology
See All in Technology
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
200
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
400
Cloudflareで実現する AIエージェント ワークフロー基盤
kmd09
0
280
新しいスケーリング則と学習理論
taiji_suzuki
10
3.8k
Copilotの力を実感!3ヶ月間の生成AI研修の試行錯誤&成功事例をご紹介。果たして得たものとは・・?
ktc_shiori
0
340
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2k
AWSマルチアカウント統制環境のすゝめ / 20250115 Mitsutoshi Matsuo
shift_evolve
0
110
Bring Your Own Container: When Containers Turn the Key to EDR Bypass/byoc-avtokyo2024
tkmru
0
840
re:Invent 2024のふりかえり
beli68
0
110
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
Accessibility Inspectorを活用した アプリのアクセシビリティ向上方法
hinakko
0
180
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
130
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
We Have a Design System, Now What?
morganepeng
51
7.3k
Building Adaptive Systems
keathley
38
2.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
The World Runs on Bad Software
bkeepers
PRO
66
11k
The Pragmatic Product Professional
lauravandoore
32
6.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
2020/6/14 Yamato OKAMOTO ICLRΦϯϥΠϯಡΈձ Deep Semi-supervised Anomaly Detection
ࣗݾհʢ͘!!ʣ ɹԬຊେʢ͓͔ͱ·ͱʣ • ژେֶඒೱݚڀࣨͰύλʔϯೝࣝΛݚڀͯ͠म࢜՝ఔमྃ • ΦϜϩϯͰ৽نࣄۀΛܦݧޙɺ͍·ࣾձγεςϜࣄۀ෦ͷݚڀॴϦʔμʔ • ເژΛϙετɾγϦίϯόϨʔʹ͢Δ͜ͱɺؔͷίϛϡχςΟΛڧԽ͍ͨ͠ ɹ㱺 ژͷมਓύϫʔΛੈքʹΒ͠Ί͍ͨ
Twitter : RoadRoller_DESU ҆৺҆શͳࣾձͷ࣮ݱʹ͚ͯɺ ࠷ۙ Anomaly Detection ʹڵຯΞϦ
Anomaly Detection ͋Δ͋Δ ఆٛࠔ • ҟৗʹ༷ʑͳόϦΤʔγϣϯ͕͋Δ • ҟৗݕग़͍͚ͨ͠ͲʮWhat is ҟৗʁʯ͕ఆٛͰ͖ͳ͍
ֶशσʔλ͕ೖखࠔ • ҟৗ໓ଟʹൃੜ͠ͳ͍ʢ※ සൟʹൃੜ͢ΔΠϕϯτҟৗ͡Όͳ༷ͯ͘ʣ • ѹతʹҟৗσʔλ͕ෆͯ͠ػցֶश͕ࠔ ैདྷख๏ɿਖ਼ৗΛఆٛ͢Δ • ʮWhat is ҟৗʁʯͷఆٛΛఘΊΔɺҟৗσʔλͷֶशఘΊΔ • ͦͷΘΓʮWhat is ਖ਼ৗʁʯͷఆٛΛֶशͯ͠ɺʮNot ਖ਼ৗʯΛҟৗͱఆ͢Δ
Anomaly Detection ͷैདྷݚڀ Deep One-Class Classification (ICML’18) • ਖ਼ৗσʔλͷΈΛ༻͍ͯɺClassifierͳΓAutoEncoderͳΓΛैདྷ௨Γʹֶश •
͜ͷͱ͖ɺಛྔ͕࣍ݩ෦ۭؒʹऩଋ͢ΔΑ͏LOSSΛՃ͑Δ • ਖ਼ৗσʔλͳΒٿʹ͢ΔͣͳͷͰɺٿ͔Β֎ΕͨσʔλΛҟৗͱఆ͢Δ ୈҰ߲ʹΑͬͯٿʹ͕ԡ͠ࠐ·ΕΔ cɿ ٿͷத৺ʢͨͩ͠≠0ʣ nɿֶश͢Δਖ਼ৗσʔλͷ
Anomaly Detection ͷධՁ؍ ͲΕ͚ͩਖ਼֬ʹҟৗΛݕͰ͖͔ͨʁ • ਖ਼ৗσʔλΛਖ਼ৗͱఆͯ͠ɺҟৗσʔλΛҟৗͱఆ͢Δਫ਼ ԼྲྀλεΫΛअຐ͠ͳ͍͔ʁ • ԼྲྀλεΫ͕͋Δ߹ɺҟৗݕػೳͷՃʹΑͬͯѱӨڹ͕ͳ͍͔Ͳ͏͔ •
ྫ͑ɺ10ΫϥεͷࣈࣝผثʹɺਤܗͳͲࣈҎ֎͕ೖྗ͞Εͨͱ͖ҟৗͱఆ͢Δػ ೳΛ͚Ճ͍͑ͨͤͰɺैདྷͷ10Ϋϥεࣝผੑೳ͕Լ͢ΔͱࠔΔ ad-hoc͔post-hoc͔ʁ • ҟৗݕ͢ΔͨΊʹϞσϧߏֶशํ๏·Ͱม͑Δඞཁ͕͋Δ͔ʁ • ·ͨɺLOSSΛޙ͔Β͚͚̍ͭͩͯ͠Ճֶश͢Δ͚ͩͰOK͔ʁ • ͲͪΒ͕ྑ͍ѱ͍ͳͲҰ֓ʹݴ͑ͳ͍͕ɺpost-hocͷํ͕ѻ͍͍͢ɻ
հจͷ֓ཁ ʮSemi-supervisedʹֶश͠Α͏ʂʯ Anomaly Detection ͷݚڀUnsupervised͕ओྲྀͷΑ͏ͩ Ͱɺֶश༻ͷҟৗσʔλ͕ೖखࠔͩͱͯ͠ɺ ӡ༻Λଓ͚ͯͨΒҟৗσʔλʹ͍ͣΕग़ձ͏ͣ ͳΒɺͦΕΒগྔͷҟৗσʔλΛͬͯɺ Semi-supervisedʹֶशͨ͠ํ͕ྑ͍ͷͰʁ ※Semi-supervisedͷAnomaly
Detectionݚڀඇৗʹগͳ͍
ఏҊख๏ ʮLOSSʹ߲Λ̍ͭՃ͠·ͨ͠ʯ Deep One-Class Classification (ICML’18) ͷLOSSʹSemi-supervisedͷ߲Λ̍ͭՃ • ࣮ಉ͡ஶऀͰͨ͠ɻࣗͷݚڀΛࣗͰΞοϓσʔτͨ͠ܗʹͳΔɻ ͠ҟৗσʔλʹग़ձͬͨΒɺ
ٿͷ֎ଆʹߦ͘Α͏ֶश͢Δ mɿsemi-supervisedʹֶश͢Δσʔλ yj ɿਖ਼ৗorҟৗͷϥϕϧ
࣮ݧ݁Ռ ॎ࣠ɿҟৗσʔλͷݕग़ੑೳ ʢHigher is Betterʣ Unsupervised Semi-supervised ԣ࣠ɿSemi-supervisedͰڭࢣ͖ͷҟৗσʔλΛֶशׂͨ͠߹ ఏҊख๏ MNISTɺFashion-MNISTɺCIFAR-10ͷσʔληοτͰධՁ
• ̍Ϋϥεͱਖ਼ৗͱఆٛͯ͠ɺAutoEncoderʴఏҊख๏ͰಛྔදݱΛֶश • Γͷ̕ΫϥεΛೖྗͨ͠ͱ͖ɺҟৗͱఆͰ͖Δ͔Ͳ͏͔ධՁ ੑೳվળΛ֬ೝ
·ͱΊͱߟ ਂֶशʹΑΔ Semi-supervised ͳ Anomaly Detection ख๏ΛఏҊ • ॳΊͯͰͳ͍ͱࢥ͏͕ɺਂֶशʹΑΔAnomaly DetectionͰsemi-supervised͍͠
• ͔ͨ͠ʹࣾձ࣮Λߟ͑Δͱɺ͜ͷઃఆద • ख๏γϯϓϧͰɺpost-hocͳͷͰѻ͍͍͢ • ࠓճԼྲྀλεΫ͕AE͕ͩͬͨɺClassificationͩͱͲ͏ͳΔ͔ʁ • Anomaly DetectionͷධՁσʔληοτͬͯଞʹͳ͍ͷ͔ͳɺɺɺɺ ʢ͍ͭ·ͰMNISTʹΑΔධՁ͕ଓ͘ͷͩΖ͏͔ʣ