Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science 101
Search
Ronojoy Adhikari
September 29, 2015
Research
4
1.5k
Data Science 101
Presentation at the Data Science 101 workshop at Orangescape.
Ronojoy Adhikari
September 29, 2015
Tweet
Share
More Decks by Ronojoy Adhikari
See All by Ronojoy Adhikari
Hydrodynamic and phoretic interactions of active particles in Python
ronojoy
0
150
IMSc Review Presentation
ronojoy
0
320
Probabilistic programming in Python
ronojoy
0
330
Mathematical Modelling
ronojoy
0
210
Data Science : Theory
ronojoy
2
1.3k
Data Science : Probability Theory
ronojoy
1
380
Active Brownian Motion
ronojoy
0
300
Does a droplet roll or slide ?
ronojoy
0
130
Bayesianism : a lightning introduction
ronojoy
2
110
Other Decks in Research
See All in Research
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
700
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
150
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
950
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
580
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
410
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.4k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
180
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
180
2025年度 生成AIの使い方/接し方
hkefka385
1
700
言語モデルの内部機序:解析と解釈
eumesy
PRO
48
18k
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
220
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Invisible Side of Design
smashingmag
299
51k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Embracing the Ebb and Flow
colly
86
4.7k
Building an army of robots
kneath
306
45k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Typedesign – Prime Four
hannesfritz
42
2.7k
Code Review Best Practice
trishagee
68
18k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
Data Science 101: insight, not numbers Ronojoy Adhikari The Institute
of Mathematical Sciences Chennai, India Orangescape Chennai, India Wednesday, 30 September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Richard Hamming
Wednesday, 30 September 15
What is the purpose of data science ? Wednesday, 30
September 15
What is the purpose of data science ? Insight, not
numbers! Wednesday, 30 September 15
Data science Wednesday, 30 September 15
Wednesday, 30 September 15
Data Wednesday, 30 September 15
Data Domain knowledge Wednesday, 30 September 15
Data Domain knowledge Data curation Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model Wednesday, 30 September
15
Data Domain knowledge Data curation Mathematical model A/B testing Wednesday,
30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Value from data Wednesday, 30 September 15
1. Problem or question ? Wednesday, 30 September 15
Wednesday, 30 September 15
Let the data speak for themselves! Ronald Fisher Wednesday, 30
September 15
Let the data speak for themselves! Ronald Fisher The data
cannot speak for themselves; and they never have, in any real problem of inference. Edwin Jaynes Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
3. Frame a hypothesis (mathematical models) Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Thank you for your attention! Wednesday, 30 September 15