Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science 101
Search
Ronojoy Adhikari
September 29, 2015
Research
4
1.4k
Data Science 101
Presentation at the Data Science 101 workshop at Orangescape.
Ronojoy Adhikari
September 29, 2015
Tweet
Share
More Decks by Ronojoy Adhikari
See All by Ronojoy Adhikari
Hydrodynamic and phoretic interactions of active particles in Python
ronojoy
0
130
IMSc Review Presentation
ronojoy
0
290
Probabilistic programming in Python
ronojoy
0
300
Mathematical Modelling
ronojoy
0
200
Data Science : Theory
ronojoy
2
1.2k
Data Science : Probability Theory
ronojoy
1
350
Active Brownian Motion
ronojoy
0
250
Does a droplet roll or slide ?
ronojoy
0
110
Bayesianism : a lightning introduction
ronojoy
2
99
Other Decks in Research
See All in Research
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
240
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
750
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
260
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3.3k
コミュニティドライブプロジェクト
smartfukushilab1
0
120
TransformerによるBEV Perception
hf149
1
630
機械学習による言語パフォーマンスの評価
langstat
6
860
marukotenant01/tenant-20240916
marketing2024
0
650
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
220
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
180
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
870
大規模言語モデルのバイアス
yukinobaba
PRO
4
830
Featured
See All Featured
KATA
mclloyd
29
14k
GraphQLとの向き合い方2022年版
quramy
44
13k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Faster Mobile Websites
deanohume
305
30k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Data Science 101: insight, not numbers Ronojoy Adhikari The Institute
of Mathematical Sciences Chennai, India Orangescape Chennai, India Wednesday, 30 September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Richard Hamming
Wednesday, 30 September 15
What is the purpose of data science ? Wednesday, 30
September 15
What is the purpose of data science ? Insight, not
numbers! Wednesday, 30 September 15
Data science Wednesday, 30 September 15
Wednesday, 30 September 15
Data Wednesday, 30 September 15
Data Domain knowledge Wednesday, 30 September 15
Data Domain knowledge Data curation Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model Wednesday, 30 September
15
Data Domain knowledge Data curation Mathematical model A/B testing Wednesday,
30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Value from data Wednesday, 30 September 15
1. Problem or question ? Wednesday, 30 September 15
Wednesday, 30 September 15
Let the data speak for themselves! Ronald Fisher Wednesday, 30
September 15
Let the data speak for themselves! Ronald Fisher The data
cannot speak for themselves; and they never have, in any real problem of inference. Edwin Jaynes Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
3. Frame a hypothesis (mathematical models) Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Thank you for your attention! Wednesday, 30 September 15