Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
sergeant-wizard
December 11, 2015
Technology
3
8.5k
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
sergeant-wizard
December 11, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
3
770
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
Azure SQL Databaseでベクター検索を活用しよう
nakasho
0
130
Tebiki Engineering Team Deck
tebiki
0
23k
書籍執筆での生成AIの活用
sat
PRO
1
240
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
1
490
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
2
1.8k
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
200
ゼロから始めたFindy初のモバイルアプリ開発
grandbig
2
540
ファシリテーション勉強中 その場に何が求められるかを考えるようになるまで / 20260123 Naoki Takahashi
shift_evolve
PRO
3
410
Introduction to Bill One Development Engineer
sansan33
PRO
0
350
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
1
610
Featured
See All Featured
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
110
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
69
Building the Perfect Custom Keyboard
takai
2
680
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
We Are The Robots
honzajavorek
0
150
Building AI with AI
inesmontani
PRO
1
660
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
150
Building a Scalable Design System with Sketch
lauravandoore
463
34k
The Language of Interfaces
destraynor
162
26k
Transcript
きちんと性能評価 〜にわかと言われないために〜 (株)アカツキ エンジニア 宮島 亮 @sergeant-wizard
はじめに - 基礎的な機械学習の内容です。勉強してる人ごめんなさい。 - にわかである私が犯したミスの話です。 - ブームに乗っかったつもりで変な解析が乱立するとTensorFlow()状態に! という自戒を込めた発表です 防御率等の成績から年俸を推定する回帰問題
自己紹介 - 宮島亮 @sergeant-wizard - ゲーム会社のエンジニア - Data Scienceにまつわる業務に携わるために機械学習まわりを勉強中 -
主にQiitaに出没中
今日お伝えしたいこと - TensorFlowの公式チュートリアル通りの流れで他の問題の解析をすると・・・ - ハイパーパラメータのチューニングで「ズル」してしまうかもしれないのでご注意を。 - チュートリアルではハイパーパラメータが既に与えられているが、実際の解析では チューニングが一番大変。
学習能力、汎化能力 - 真の分布は1次関数 + ノイズ - 3次関数: 学習能力低、汎化能力高 - 9次関数:
学習能力高、汎化能力低 - ほとんどの場合、汎化能力が高くないと意味がない - ニューラルネットワークは、学習が進むにつれて 次数が上がっていくイメージ:過学習
データセットの分け方 - Training Data Set : 学習に使う - Test Data
Set : 汎化能力を見るのに使う - Validation Data Set : ハイパーパラメータのチューニングに使う
ニューラルネットワークのハイパーパラメータ - 学習回数 - 学習係数 - 重み減衰係数 - モメンタム係数 -
ネットワーク構造 - ...etc このグラフを見ながら、「ここで学習をやめました」はズル!
データの分け方も色々 - プロ野球選手の年俸査定の記事では、 全データ94選手、うちTraining Data Setが89選手、Test Data Setが5選手 - ホールドアウト法
: もっともナイーブな方法 このデータの分け方の任意性のモヤモヤを解消するために・・・ - 交差確認法 - 一つ抜き法 - ブートストラップ法 詳しくはこちらの記事にて
まとめ - 学習能力と汎化能力は違うもので、 ニューラルネットワークではトレードオフになりやすい - 一般に機械学習ではTraining Data Set、Test Data Setで区別される
- ニューラルネットワークではハイパーパラメータのチューニングのためにValidation Data Set が使われることがある - ハイパーパラメータのチューニングでTest Data Setを使うのは「ズル」 - データをどう分割するかも重要
マサカリお待ちしております - Facebook : Ryo Miyajima - Twitter : @sergeant-wizard
- GitHub : sergeant-wizard - Qiita : sergeant-wizard
参考資料 - Hugo先生のNeural Networkの講義 - はじめてのパターン認識 - 問題の記事:プロ野球選手の年俸査定 - より深掘りしてる記事:
機械学習の性能評価