Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
Search
sergeant-wizard
December 11, 2015
Technology
3
8.5k
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
sergeant-wizard
December 11, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.8k
ソフトウェアエンジニアとデータエンジニアの違い・キャリアチェンジ
mtpooh
1
320
Design and implementation of "Markdown to Google Slides" / phpconfuk 2025
k1low
1
160
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
180
今日から使える AWS Step Functions 小技集 / AWS Step Functions Tips
kinunori
2
210
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
25
17k
Data Engineering Guide 2025 #data_summit_findy by @Kazaneya_PR / 20251106
kazaneya
PRO
8
1.5k
DSPy入門
tomehirata
6
900
AI時代に必要なデータプラットフォームの要件とは by @Kazaneya_PR / 20251107
kazaneya
PRO
4
730
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
230
なぜ新機能リリース翌日にモニタリング可能なのか? 〜リードタイム短縮とリソース問題を「自走」で改善した話〜 / data_summit_findy_Session_2
sansan_randd
1
120
InsightX 会社説明資料/ Company deck
insightx
0
210
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Side Projects
sachag
455
43k
BBQ
matthewcrist
89
9.9k
Testing 201, or: Great Expectations
jmmastey
46
7.7k
Optimizing for Happiness
mojombo
379
70k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Building Applications with DynamoDB
mza
96
6.7k
Documentation Writing (for coders)
carmenintech
76
5.1k
Transcript
きちんと性能評価 〜にわかと言われないために〜 (株)アカツキ エンジニア 宮島 亮 @sergeant-wizard
はじめに - 基礎的な機械学習の内容です。勉強してる人ごめんなさい。 - にわかである私が犯したミスの話です。 - ブームに乗っかったつもりで変な解析が乱立するとTensorFlow()状態に! という自戒を込めた発表です 防御率等の成績から年俸を推定する回帰問題
自己紹介 - 宮島亮 @sergeant-wizard - ゲーム会社のエンジニア - Data Scienceにまつわる業務に携わるために機械学習まわりを勉強中 -
主にQiitaに出没中
今日お伝えしたいこと - TensorFlowの公式チュートリアル通りの流れで他の問題の解析をすると・・・ - ハイパーパラメータのチューニングで「ズル」してしまうかもしれないのでご注意を。 - チュートリアルではハイパーパラメータが既に与えられているが、実際の解析では チューニングが一番大変。
学習能力、汎化能力 - 真の分布は1次関数 + ノイズ - 3次関数: 学習能力低、汎化能力高 - 9次関数:
学習能力高、汎化能力低 - ほとんどの場合、汎化能力が高くないと意味がない - ニューラルネットワークは、学習が進むにつれて 次数が上がっていくイメージ:過学習
データセットの分け方 - Training Data Set : 学習に使う - Test Data
Set : 汎化能力を見るのに使う - Validation Data Set : ハイパーパラメータのチューニングに使う
ニューラルネットワークのハイパーパラメータ - 学習回数 - 学習係数 - 重み減衰係数 - モメンタム係数 -
ネットワーク構造 - ...etc このグラフを見ながら、「ここで学習をやめました」はズル!
データの分け方も色々 - プロ野球選手の年俸査定の記事では、 全データ94選手、うちTraining Data Setが89選手、Test Data Setが5選手 - ホールドアウト法
: もっともナイーブな方法 このデータの分け方の任意性のモヤモヤを解消するために・・・ - 交差確認法 - 一つ抜き法 - ブートストラップ法 詳しくはこちらの記事にて
まとめ - 学習能力と汎化能力は違うもので、 ニューラルネットワークではトレードオフになりやすい - 一般に機械学習ではTraining Data Set、Test Data Setで区別される
- ニューラルネットワークではハイパーパラメータのチューニングのためにValidation Data Set が使われることがある - ハイパーパラメータのチューニングでTest Data Setを使うのは「ズル」 - データをどう分割するかも重要
マサカリお待ちしております - Facebook : Ryo Miyajima - Twitter : @sergeant-wizard
- GitHub : sergeant-wizard - Qiita : sergeant-wizard
参考資料 - Hugo先生のNeural Networkの講義 - はじめてのパターン認識 - 問題の記事:プロ野球選手の年俸査定 - より深掘りしてる記事:
機械学習の性能評価