Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
Search
sergeant-wizard
December 11, 2015
Technology
3
8.4k
TensorFlow研究会 きちんと性能評価 〜にわかと言われないために〜
sergeant-wizard
December 11, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
29
13k
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
220
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.7k
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.4k
アプリエンジニアのためのGraphQL入門.pdf
spycwolf
0
100
飲食店データの分析事例とそれを支えるデータ基盤
kimujun
0
190
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
110
DynamoDB でスロットリングが発生したとき_大盛りver/when_throttling_occurs_in_dynamodb_long
emiki
1
440
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
OS 標準のデザインシステムを超えて - より柔軟な Flutter テーマ管理 | FlutterKaigi 2024
ronnnnn
1
300
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.3k
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
32
1.5k
Fireside Chat
paigeccino
34
3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
It's Worth the Effort
3n
183
27k
Documentation Writing (for coders)
carmenintech
65
4.4k
How to Ace a Technical Interview
jacobian
276
23k
A Philosophy of Restraint
colly
203
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
GitHub's CSS Performance
jonrohan
1030
460k
Producing Creativity
orderedlist
PRO
341
39k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Transcript
きちんと性能評価 〜にわかと言われないために〜 (株)アカツキ エンジニア 宮島 亮 @sergeant-wizard
はじめに - 基礎的な機械学習の内容です。勉強してる人ごめんなさい。 - にわかである私が犯したミスの話です。 - ブームに乗っかったつもりで変な解析が乱立するとTensorFlow()状態に! という自戒を込めた発表です 防御率等の成績から年俸を推定する回帰問題
自己紹介 - 宮島亮 @sergeant-wizard - ゲーム会社のエンジニア - Data Scienceにまつわる業務に携わるために機械学習まわりを勉強中 -
主にQiitaに出没中
今日お伝えしたいこと - TensorFlowの公式チュートリアル通りの流れで他の問題の解析をすると・・・ - ハイパーパラメータのチューニングで「ズル」してしまうかもしれないのでご注意を。 - チュートリアルではハイパーパラメータが既に与えられているが、実際の解析では チューニングが一番大変。
学習能力、汎化能力 - 真の分布は1次関数 + ノイズ - 3次関数: 学習能力低、汎化能力高 - 9次関数:
学習能力高、汎化能力低 - ほとんどの場合、汎化能力が高くないと意味がない - ニューラルネットワークは、学習が進むにつれて 次数が上がっていくイメージ:過学習
データセットの分け方 - Training Data Set : 学習に使う - Test Data
Set : 汎化能力を見るのに使う - Validation Data Set : ハイパーパラメータのチューニングに使う
ニューラルネットワークのハイパーパラメータ - 学習回数 - 学習係数 - 重み減衰係数 - モメンタム係数 -
ネットワーク構造 - ...etc このグラフを見ながら、「ここで学習をやめました」はズル!
データの分け方も色々 - プロ野球選手の年俸査定の記事では、 全データ94選手、うちTraining Data Setが89選手、Test Data Setが5選手 - ホールドアウト法
: もっともナイーブな方法 このデータの分け方の任意性のモヤモヤを解消するために・・・ - 交差確認法 - 一つ抜き法 - ブートストラップ法 詳しくはこちらの記事にて
まとめ - 学習能力と汎化能力は違うもので、 ニューラルネットワークではトレードオフになりやすい - 一般に機械学習ではTraining Data Set、Test Data Setで区別される
- ニューラルネットワークではハイパーパラメータのチューニングのためにValidation Data Set が使われることがある - ハイパーパラメータのチューニングでTest Data Setを使うのは「ズル」 - データをどう分割するかも重要
マサカリお待ちしております - Facebook : Ryo Miyajima - Twitter : @sergeant-wizard
- GitHub : sergeant-wizard - Qiita : sergeant-wizard
参考資料 - Hugo先生のNeural Networkの講義 - はじめてのパターン認識 - 問題の記事:プロ野球選手の年俸査定 - より深掘りしてる記事:
機械学習の性能評価