Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝的アルゴリズムでシフト組みを自動化した話
Search
ShibaNyan
September 10, 2018
Programming
0
1.8k
遺伝的アルゴリズムでシフト組みを自動化した話
BitValley2018 AfterPartyのLTでお話しました.
当番のシフトを組むのに時間がかかりすぎるという問題を,遺伝的アルゴリズムを使ってLINE BOTに実装することで解決しました.
ShibaNyan
September 10, 2018
Tweet
Share
More Decks by ShibaNyan
See All by ShibaNyan
証明写真を30円で作る
shiba6v
0
890
IPythonマジックコマンドを作る
shiba6v
1
1.6k
畳み込みニューラルネットワーク(CNN)の判断根拠の可視化手法 (20分トーク用)
shiba6v
1
1.1k
Other Decks in Programming
See All in Programming
ゆるやかにgolangci-lintのルールを強くする / Kyoto.go #56
utgwkk
2
390
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
210
create_tableをしただけなのに〜囚われのuuid編〜
daisukeshinoku
0
260
Haze - Real time background blurring
chrisbanes
1
510
PHPで作るWebSocketサーバー ~リアクティブなアプリケーションを知るために~ / WebSocket Server in PHP - To know reactive applications
seike460
PRO
2
450
Webエンジニア主体のモバイルチームの 生産性を高く保つためにやったこと
igreenwood
0
340
生成AIでGitHubソースコード取得して仕様書を作成
shukob
0
460
Jakarta EE meets AI
ivargrimstad
0
250
これでLambdaが不要に?!Step FunctionsのJSONata対応について
iwatatomoya
2
3.7k
Security_for_introducing_eBPF
kentatada
0
110
たのしいparse.y
ydah
3
120
Semantic Kernelのネイティブプラグインで知識拡張をしてみる
tomokusaba
0
180
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
Embracing the Ebb and Flow
colly
84
4.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Transcript
遺伝的アルゴリズムで シフト組みを自動化した話 BitValley 2018 AfterParty LT
自己紹介 • シバニャン • 京都大学工学部4回生 • Twitter: @_6v_ • CAMPHOR-
当番のシフト • 30コマ,約30人のシフト組み • 1コマに1人割り当てる
シフト決定の流れ 調整サービス シフト組み シフト発表 • 調整サービスを利用してシフトを提出してもらう • 手動でシフト組み • グループLINEで完成したシフトを発表
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44)
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44) 2時間かかる・・・ 自動化したい・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき など・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △を考慮するべき など・・・
遺伝的アルゴリズムでやる シフトを遺伝子に見立てて,生物が交叉,突然 変異,自然淘汰によって進化するようにシフトを 改良していく [(枠1),(枠2),(枠3),…,(枠30)] 例) [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] : 300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)]
: 100点 … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)] : 50点
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] :
300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)] : 100点 … (6パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] [(Gさん),(Eさん),(Nさん),…,(Tさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ 大事なのはここ! 評価する式を立てる
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす 評価式を追加するだけで, 簡単にシフトの決め方を 変えられる!
BOTにして 使ってみる
まとめ • 遺伝的アルゴリズムを使うと,いい感じのシフ トが組める • シフトの組み方の変更が簡単 • BOTにすると非エンジニアも使えて便利