Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝的アルゴリズムでシフト組みを自動化した話
Search
ShibaNyan
September 10, 2018
Programming
0
2.1k
遺伝的アルゴリズムでシフト組みを自動化した話
BitValley2018 AfterPartyのLTでお話しました.
当番のシフトを組むのに時間がかかりすぎるという問題を,遺伝的アルゴリズムを使ってLINE BOTに実装することで解決しました.
ShibaNyan
September 10, 2018
Tweet
Share
More Decks by ShibaNyan
See All by ShibaNyan
証明写真を30円で作る
shiba6v
0
980
IPythonマジックコマンドを作る
shiba6v
1
1.8k
畳み込みニューラルネットワーク(CNN)の判断根拠の可視化手法 (20分トーク用)
shiba6v
1
1.3k
Other Decks in Programming
See All in Programming
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.4k
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
170
Python札幌 LT資料
t3tra
7
1.1k
AtCoder Conference 2025
shindannin
0
620
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
0
190
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
400
GISエンジニアから見たLINKSデータ
nokonoko1203
0
180
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
420
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
4k
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
190
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
900
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
200
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Become a Pro
speakerdeck
PRO
31
5.7k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
17
Everyday Curiosity
cassininazir
0
110
Deep Space Network (abreviated)
tonyrice
0
22
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Cult of Friendly URLs
andyhume
79
6.7k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
66
Transcript
遺伝的アルゴリズムで シフト組みを自動化した話 BitValley 2018 AfterParty LT
自己紹介 • シバニャン • 京都大学工学部4回生 • Twitter: @_6v_ • CAMPHOR-
当番のシフト • 30コマ,約30人のシフト組み • 1コマに1人割り当てる
シフト決定の流れ 調整サービス シフト組み シフト発表 • 調整サービスを利用してシフトを提出してもらう • 手動でシフト組み • グループLINEで完成したシフトを発表
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44)
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44) 2時間かかる・・・ 自動化したい・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき など・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △を考慮するべき など・・・
遺伝的アルゴリズムでやる シフトを遺伝子に見立てて,生物が交叉,突然 変異,自然淘汰によって進化するようにシフトを 改良していく [(枠1),(枠2),(枠3),…,(枠30)] 例) [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] : 300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)]
: 100点 … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)] : 50点
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] :
300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)] : 100点 … (6パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] [(Gさん),(Eさん),(Nさん),…,(Tさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ 大事なのはここ! 評価する式を立てる
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす 評価式を追加するだけで, 簡単にシフトの決め方を 変えられる!
BOTにして 使ってみる
まとめ • 遺伝的アルゴリズムを使うと,いい感じのシフ トが組める • シフトの組み方の変更が簡単 • BOTにすると非エンジニアも使えて便利