Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NO FLOP!失敗できない人の失敗しない技術を読むスライド
Search
Hiroki Shimada
August 08, 2023
Business
0
700
NO FLOP!失敗できない人の失敗しない技術を読むスライド
Google×スタンフォード NO FLOP! 失敗できない人の失敗しない技術, サンマーク出版
を解説するスライドです。
株式会社Polyscapeの社内勉強会用のスライドです。
Hiroki Shimada
August 08, 2023
Tweet
Share
More Decks by Hiroki Shimada
See All by Hiroki Shimada
カレーは人生
shimap_sampo
0
67
AI完全初心者でも最新の生成AIの仕組がわかった気になれるプレゼン
shimap_sampo
5
3.7k
Other Decks in Business
See All in Business
Mercari-Fact-book_jp
mercari_inc
3
150k
SHIFT ASIA 会社説明資料 V2.1
shiftasiarec
0
170
セーフィー株式会社(Safie Inc.) 会社紹介資料
safie_recruit
6
310k
i3DESIGN_Culture_Book / We-are-hiring
i3design
0
34k
株式会社AbemaTV 会社説明資料
abematv
2
1k
株式会社Domuz会社紹介資料(採用)
kimpachi_d
0
21k
株式会社B4A 会社紹介
b4a
0
6.6k
SendGrid Night #10「Email Activityの活用法」
adaisukev
0
150
ホラクラシー組織の比較
hashiyaman
0
200
SendGrid Night #10「ワンクリック配信停止の最新情報」
ken_yoshi
0
250
国立大学法人等職員仕事ガイド(北海道地区)
univstaffhokkaido
0
2.5k
総合研究院の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
1.4k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Why Our Code Smells
bkeepers
PRO
336
57k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Practical Orchestrator
shlominoach
186
10k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Code Review Best Practice
trishagee
67
18k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
Google×スタンフォード NO FLOP! 失敗できない⼈の失敗しない技術 を読む会 株式会社 Polyscape 社内勉強会資料 @shimap_sampo
仮説検証⽂化を知ってもらうため 次タイトルをやる中での 知⾒や共通⾔語になったら嬉しい なんで読むか
作者 Albert Savoia サン・マイクロシステムズ → Google(初のEngineering Director) → 起業して約1億ドルで売却 →
さらに起業して、失敗
残酷な事実
ほとんどの新製品やサービス、 新規事業は失敗する── どれだけ有望に⾒え、担当者が情熱を傾け、 計画を巧みに実⾏したとしても
⼀⽅、⾃分⾃⾝や⾃分のアイデアについては、 なぜか失敗とは無縁なものだと信じ込む。
いまこの瞬間に、 世に出しても失敗するようなアイデアを 実現しようと必死に格闘している⼈ が⼤勢いる
ほとんどの新製品は市場で失敗する。 たとえ、どんなにきちんとつくって売ったとしても。
新製品失敗の法則の本 この本は、 法則を知り、失敗から少しでも遠ざかることができる
失敗の定義 「市場での失敗」を、 「投資した新製品を実際の市場に出したときの結果」が 「期待外れか、まったく逆になる」と定義 w w w w
たとえ賞をとったり、バズったりしても、 儲けが期待外れであれば、市場での失敗とみなす w w w w w w
失敗 = 適切なA × 適切なB × 不適切なC × 適切なD …
成功 = 適切なA × 適切なB × 適切なC × 適切なD … 途中に0が1個でもあると失敗する ゲーム内容 プロモーション 価格 市場の⼤きさ
ニールセンのレポート 新製品の約80%は当初の期待には応えられず、 「失敗」や「期待外れ」と⾒なされるか、 発売中⽌になる
Google + Google Wave ハワード ザ ダック Google Glass ジョージ・ルーカス
ジョン・カーター ディズニー ディズニーでさえも失敗する。
繰り返します。
ほとんどの新製品は市場で失敗する。 たとえ、どんなにきちんとつくって売ったとしても。 この部分はよく抵抗される しかし、⼗分な経験や能⼒があって、 計画をきちんと実⾏していても、失敗する。それが事実。
FLOP
Failure Launch : 対象市場への到達に必要な認知や在庫がない。 Operation : 機能がユーザーの期待を満たさない。 Premise : アイディアがそもそもダメ。
失敗の原因のほとんどが Premise 頑張って作ってもそもそも失敗する
Right It : 適切に実現すれば市場で成功する アイディア Wrong It : たとえきちんと作って売ったとしても市場で 失敗するアイディア
Wrong It Right It 市場で成功 している製品
どうしたら Wrong It を作らずに済むか?
市場調査? NO. 市場調査は、創造の世界の産物に過ぎない。 もしメニューに『レディライク』があったとしたら、あな たが⽩ワインではなく『レディライク』を選ぶ可能性はど れぐらいでしょうか? ライトなのにコクがある、スリムなボトル ⼊りの⼥性向けビール『レディライク』 1 2
3 4 5
市場調査がうまくいかない理由 1. 翻訳を間違う 2. 予測が難しい 3. ⾝銭が無い 4. 確証バイアス Twitter?なんで140⽂字までなの?
⻑い⽅がいいに決まってる! Wrong It に突っ込むことも、Right It を諦めることもある 使うと思って買った⾞を 実際全然使わなかった ⾝銭が切られていないので、 結果に⼤して責任を持たない ⾃分の理論を裏付ける根拠 ばかりを信じる
じゃあどうするか?
プレトタイピング w プロトタイピング + Pretend 「意⾒」ではなく「データ」に頼る
その前に データ と 仮説 について
データの種類 YOD Your Own Data OPD Other People’s Data The
Last Spell WL 9.5万 → 売上13万 MISTROGUE WL YYY 万 → 売上 XXX 万 ひと握りのYODの価値は、1トンものOPDに匹敵する
検証可能な仮説の⽴て⽅ まずは MEH:市場の反応に関する仮説 〈アイデア〉 〈MEH〉 コインランドリー常設の⾃動洗濯物折りたたみ機 洗濯物をたたむのは⼤変だ。⾃動洗濯物折りたたみ機を コインランドリーにレンタルし、⽉極基本料と1回毎の 使⽤料を払ってもらえば、⼤儲けできるはずだ。
MEHをXYZ仮説に落とし込む 少なくともX%のYはZする。 〈MEH〉 〈XYZ仮説〉 洗濯物をたたむのは⼤変だ。⾃動洗濯物折りたたみ機を コインランドリーにレンタルし、⽉極基本料と1回毎の 使⽤料を払ってもらえば、⼤儲けできるはずだ。 コインランドリー利⽤者の少なくとも50%は、洗濯物を たたんでもらうために、洗濯⼀回分につき2~4ドル(価 格は場所によって異なる)を⽀払う。
XYZ仮説をxyz仮説に超ズームイン 〈XYZ仮説〉 コインランドリー利⽤者の少なくとも50%は、洗濯物を たたんでもらうために、洗濯⼀回分につき2~4ドル(価 格は場所によって異なる)を⽀払う。 〈xyz仮説〉 レニーズ・コインランドリーの利⽤者の少なくとも50% は、「Fold4U」に洗濯物をたたんでもらうために2ドル ⽀払う。
プレトタイピング w プロトタイピング + Pretend 製品が売れるかを、製品を作らずに検証すること。 製品がある「フリ」をする。
プレトタイピング w プロトタイピング w :製品の実現可能性を検証 :製品が市場で成功するかの検証
プレトタイピング⼿法①:メカニカルターク 機械を作る前に、機械の中に⼈が⼊って⼈⼒でやり、YODを集める
プレトタイピング⼿法①:メカニカルターク AI NPCゲーム プレイヤー AIゲームも、中⾝⼈間でコンセプト検証(YOD集め)をしてもいいかも
プレトタイピング⼿法 説明 例 メカニカルターク型 複雑な製品をつくる前に中に⼈が⼊って本物 のフリをする。 名刺スキャンサービスをつくる前に、⼈⼒で⼊⼒を⾏って 利⽤者数を調べる ピノキオ型 製品の模型を本物のように扱い、⾃分が使う
かを検証する。 スマートスピーカーの置物を作って、話しかけることで⾃ 分がどのくらいどんな⽬的で使うか知る 偽の⽞関型 ⽞関⼝だけを⽴派にし、製品があるフリをし て、問い合わせをする⼈の数を検証する。 ゲームのイメージ画像とWEBサイトだけを⽤意して、予約 や事前登録が⼊るかどうかを検証する。 ⼀夜限り型 最低限のスタッフとリソースを⽤意して、⼀夜 限り(短い期間)でサービス提供を⾏う。 Air bnb の創業者は、アパートの家賃が払えなくなったので サイトを作って募集したら数時間で3件の予約が来た。 潜⼊者型 商品のラベルを張り替えるなどして、 実際の商品とすり替えて観察する。 IKEAの制服を買ってIKEAに忍び込み、⾃分たちの製品(電気ス イッチカバー)を勝⼿に置いて、客が⼿に取るかを観察した。 だいたいのプレトタイピングは、48時間以内に終わるはず。それ以上は⻩⾊信号。
YODを集めるときの注意点
⾝銭の伴ってないデータは無価値!
⾝銭変換表 ソーシャルでの「いいね!」や「RT」も無価値!
検証で得られたYODが、予想通りか⾼い 検証で得られたYODの解釈が難しい 検証で得られたYODが、予想より低い 検証で得られたYODが、予想より⼤幅に低い 検証で得られたYODが、予想より⼤幅に⾼い
1回で結論を出さず、 試⾏錯誤して何回もトライして改善していく。
これを、開発前にやる (理想は)
まとめ • 製品失敗の多くの原因は、Premise。「上⼿く作ってもそもそも売れない」。 • OPDは当てにならない。仮説検証=YOD集め。⼀握りのYODの価値は、1トンもの OPDに匹敵する。 • プレトタイピングは、「実現可能性」ではなく、「売れるか」の検証。 • ⾝銭が切られていないデータは無価値。ただの意⾒。意⾒ではなくデータに頼る。
• プレトタイピングで、製品を作らずに、製品が売れるかを検証する。それを何度も 諦めずやる。最初に思いついたアイディアが最⾼のアイディアとは限らない。