Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS Loft Tokyo のASK AN EXPERT ブースにおけるご相談・ご対応ロ...
Search
Eiji Shinohara
February 23, 2019
Technology
0
650
AWS Loft Tokyo の ASK AN EXPERT ブースにおける ご相談・ご対応ログ を分析しました :) / ASK AN EXPERT at AWS Loft Tokyo - Tech Consulting Log Analysis
delivered this talk at JAWS DAYS 2019 (
https://jawsdays2019.jaws-ug.jp/
)
Eiji Shinohara
February 23, 2019
Tweet
Share
More Decks by Eiji Shinohara
See All by Eiji Shinohara
Algolia Best Practices Fall 2020
shinodogg
2
1.2k
Algolia Fall 20 Release - wrap up in Japanese
shinodogg
0
910
Algolia 2020 Autumn
shinodogg
0
3.2k
Algolia introduction - DEMO and Ranking Formula
shinodogg
0
460
Introducing Algolia with Demo
shinodogg
0
6k
Algolia Announces Global Expansion Into Japan
shinodogg
0
2.4k
Introducing Algolia in a nutshell
shinodogg
1
1.3k
Building and Running Microservices with AWS
shinodogg
0
730
Accelerating AdTech on AWS in Japan
shinodogg
1
340
Other Decks in Technology
See All in Technology
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
190
AI時代、“平均値”ではいられない
uhyo
8
2.6k
AIとともに歩んでいくデザイナーの役割の変化
lycorptech_jp
PRO
0
890
AI時代の開発を加速する組織づくり - ブログでは書けなかったリアル
hiro8ma
1
320
20251024_TROCCO/COMETAアップデート紹介といくつかデモもやります!_#p_UG 東京:データ活用が進む組織の作り方
soysoysoyb
0
110
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.8k
デザインとエンジニアリングの架け橋を目指す OPTiMのデザインシステム「nucleus」の軌跡と広げ方
optim
0
120
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
1
510
ブラウザのAPIで Nintendo Switch用の特殊なゲーム用コントローラーを体験型コンテンツに / IoTLT @ストラタシス・ジャパン
you
PRO
0
140
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
260
Linux カーネルが支えるコンテナの仕組み / LF Japan Community Days 2025 Osaka
tenforward
1
130
Implementing and Evaluating a High-Level Language with WasmGC and the Wasm Component Model: Scala’s Case
tanishiking
0
190
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
How to train your dragon (web standard)
notwaldorf
97
6.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
130k
Code Review Best Practice
trishagee
72
19k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Product Roadmaps are Hard
iamctodd
PRO
55
11k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
The Cult of Friendly URLs
andyhume
79
6.6k
Faster Mobile Websites
deanohume
310
31k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Building Adaptive Systems
keathley
44
2.8k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Transcript
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ) 9C :KN : E / L A
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ( ) 2 7B : @ @ @ : A : @ @ @ 31 .4A4 T c 0 - a WS ML 31 /@8 2@ @ JI L J
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Loft Tokyo? ASK AN EXPERT?
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT @ AWS Loft Tokyo ! 2 01 8 - AWS ! Startup Developer J
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Cloud9
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Tokenization Word2Vec
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Tokenization from janome.tokenizer import Tokenizer t = Tokenizer("userdic.csv", udic_enc="utf8") f = io.open('./sodan.txt', 'r', encoding='utf-8’) tokens = t.tokenize(line) for token in tokens: partOfSpeech = token.part_of_speech.split(',')[0] if partOfSpeech == u'’: if token.surface == ‘https’: pass elif token.surface.isnumeric(): pass else: sodan_words.append(token.surface) https://github.com/mocobeta/janome
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Word2Vec from gensim.models import word2vec sodan_sentences = word2vec.Text8Corpus('./sodan_words.txt') sodan_model = word2vec.Word2Vec(sodan_sentences, size=200, min_count=20, window=15) results = sodan_model.wv.most_similar(positive=[u'']) for result in results: print(result) https://github.com/RaRe-Technologies/gensim
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT Logs ! 43 9D 9 . 3 058675 2 3 1 . 3 - 2 3 43 058675 3 . 3 I 9D EAC :
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT Logs ! 2 A L . 201 65 - A 201 2 743 . 8 9:
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Loft Tokyo - ASK AN EXPERT Logs • EC2/RDS/S3 27)+&(70*T LO G;@ ! ⇒ <8=CU • "$Lambda'6,.FMIJT ?QK/ %524LOU ⇒ > J • AWS9SAWS(37-IJ:ND AB# (*´∀V*) " E HRAWS Loft Tokyo “ASK AN EXPERT”17*P J