Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Grad-CAMの始まりのお話
Search
Shintaro Yoshida
October 25, 2020
Research
0
91
Grad-CAMの始まりのお話
EAGLYS株式会社 AI 勉強会第4回の資料になります。
Grad-CAMの実装とそのアイデアの元となったCAMやGuided-Back-Propagationについて説明しています。
Shintaro Yoshida
October 25, 2020
Tweet
Share
More Decks by Shintaro Yoshida
See All by Shintaro Yoshida
顔認証・顔識別周りのサーベイ
shintaro202020
7
45
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
shintaro202020
4
230
The Origin of Grad-CAM
shintaro202020
0
140
Other Decks in Research
See All in Research
Nullspace MPC
mizuhoaoki
1
480
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
720
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
170
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
14k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
2k
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
440
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
IMC の細かすぎる話 2025
smly
2
780
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
580
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
GitHub's CSS Performance
jonrohan
1032
470k
Thoughts on Productivity
jonyablonski
73
5k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
We Have a Design System, Now What?
morganepeng
54
7.9k
Agile that works and the tools we love
rasmusluckow
331
21k
How STYLIGHT went responsive
nonsquared
100
6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
Grad-CAMの 始まりの話 AI勉強会#4 @Eaglys on 2020/10/25 吉田 慎太郎 @sht_47
Grad-CAMの特徴 • Grad-CAM(Gradient-weighted Class Activation Mapping, 2016, Ramprasaath) ◦ XAIで最も有名なもの(理由はGrad-CAMのページで説明)
◦ CAM(2015, Zhou) の弱点を克服し、全てのCNNモデルに対して一般化 • XAI(Explainable Artificial Intelligence) の目的 (筆者の長期的な視点) 失敗の原因を特定 (モデル << 人間) 予測の根拠を説明し、判定の信頼⬆ (モデル ≒ 人間) 人間がAIに教わる (モデル >> 人間)
今回の勉強会で扱う内容 - Grad-CAMのアイデアになった論文たち - - - - Grad-CAMのモデル中身 - 実験結果
- Google Colaboratoryでの実装
NIN(Network In Network, 2014 Lin et al) - 偉大な論文 (2つのメインアイデア)
計算量削減のために1x1 Convを導入 ( InceptionNetのアイデアの源、ResNet Botttleneck Block) GAP(Global Average Pooling) を提案 → 最近だとAdaptive Average Pooling • GAP Structural Regularizerとして機能 ◦ Feature MapとCategory間の関係がより自然に ◦ 追加のParameterが不要 ◦ Spatial TranslationにRobust
Object Detectors Emerge In Deep Scene Cnns(2015 Zhou et al)
- Scene Recognitionの問題を解く → Object Detector が出現した Objectの正解ラベルを与えていないのに。。。 先行研究として、Object Classification問題のCNNで、Object Localizationの出現 Places Database (2014 Zhou et al )
CAM(Class Activation Mapping 2015 Zhou et al) … … Final
Conv GAP FC k枚 k個 … c個 a a 1 を用いて CAMを生成
CAM(Class Activation Mapping) … … Final Conv GAP FC 4096枚
4096個 … 1000個 VGG16 (ImageNet) 7 7
CAMの数式と概念図 iとjでSum Kで Sum それぞれのプロセスは独立 Zは最終Feature Mapのサイズ(今回は49)
CAMの使用方法(推論時に利用) Iとjで 平均 Kで 加重平均 (Image Source : Zhou et
al 2015) CAM Kで 加重平均 推論 CAM生成
Guided Back-Propagation(2015 Springenberg) - Deconvolutional Network (2011 Zeiler) Max Poolingの反対の操作
- Guided Backprop deconvNetを ReLUのBackPropagationに組み合わせ
Guided-Backpropの実験結果 Batch Size : 64 Learning Rate : 0.01 Weight
Decay : 0.001 Optimizer : SGD Conv6 Conv9
Grad-CAM(2016 Ramprasaath) CAMはGAPに限定 → 一般化( 全てのCNN Architectureで可能) CAM(Corase)とGuided-Backprop(Fined-Grained)を組み合わせ CAMにReLUを挿入(Positiveな影響を与えるもののみ必要) CAM,
Grad-CAM共にArchitectural ChangeやRe-Trainが必要ない iとjでSum Kで 加重平均 Kで 加重平均
Grad-CAMの結果1 - Microsoft COCO データセット - Validation Dataset からSample -
Ice Creamで誤り
Grad-CAMの結果2 VGG@ImageNetにおける間違い集 モデルがバイアスを含むかどうか
実装 - Pytorch 1.6 https://github.com/sht47/grad-cam-Pytorch1.6 - Tensorflow 2.3 https://github.com/sht47/grad-cam-Tensorflow2.3