Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Creating a New Stream Data Pipeline on Google C...
Search
Shu Suzuki
July 19, 2019
Programming
1
3.9k
Creating a New Stream Data Pipeline on Google Cloud Platform 20190719
大量のログデータを、より効率的に、より柔軟に扱うためのパイプラインをGCP使って作った話
Shu Suzuki
July 19, 2019
Tweet
Share
More Decks by Shu Suzuki
See All by Shu Suzuki
バフェットコード株式会社 開発チームカルチャーデック
shoe116
1
450
Data & Analytics 井戸端会議 #02
shoe116
0
430
Data & Analytics 井戸端会議 #01
shoe116
1
48
財務データを題材に、 ETLとは何であるかを考える
shoe116
9
3.4k
Ruby on Railsで作る銘柄スクリーニング
shoe116
0
840
Creating Stream DataPipeline on GCP Using Apache Beam
shoe116
3
2.9k
Business Intelligence Engineer in Mercari
shoe116
0
150
Other Decks in Programming
See All in Programming
2026年 エンジニアリング自己学習法
yumechi
0
130
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
680
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
150
CSC307 Lecture 09
javiergs
PRO
1
820
Patterns of Patterns
denyspoltorak
0
1.3k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
680
組織で育むオブザーバビリティ
ryota_hnk
0
170
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
960
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
Implementation Patterns
denyspoltorak
0
280
Data-Centric Kaggle
isax1015
2
760
Featured
See All Featured
30 Presentation Tips
portentint
PRO
1
210
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Balancing Empowerment & Direction
lara
5
880
Are puppies a ranking factor?
jonoalderson
1
2.7k
Building the Perfect Custom Keyboard
takai
2
680
Practical Orchestrator
shlominoach
191
11k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
53
Paper Plane
katiecoart
PRO
0
46k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Chasing Engaging Ingredients in Design
codingconduct
0
110
Transcript
1 GCPでStreamなデータパイプライン作った {“id”: “@shoe116”, “team”: “Data Platform”}
2 mercariのlog収集の歴史とマイクロサービス化 GCPでStreamなデータパイプライン作った GCPで作ったStreamなデータパイプラインの概要 AvroとDataFlowを使ったETL処理 今日のまとめ 02 03 04 01
3 - Mercari Data Platform - Stream/Batch Pipeline Developer -
Scala, Python, Java, Go, etc - Apache Beam, Kafka, Storm, Hive, Hadoop… Shu Suzuki @shoe116
4 指定された区間(data sources - data sinks)で データパイプライン? 信頼性のあるデータ処理やデータ転送を 安定的に提供する仕組み 2.
3. 1. 今回は「本番環境のlogを、DWH等の分析環境に届ける」ことを 主眼にしたデータパイプラインについて話します。
5 Mercariのlog収集の歴史と マイクロサービス化
6 既存のlog収集の仕組み モノリスのWebアプリケーションのlogをfluentdで伝搬しbatch処理
7 マイクロサービスのアーキテクチャ データパイプライン的に言うと、data-sourceが不特定多数になる ??
8 GCPで作った Streamなデータパイプラインの概要
9 メッセージ志向ミドルウェア(G製Kafka) 使っているGCPのサービス Beamで記述できる処理エンジン(G製Flink) Cloud Dataflow Cloud Pub/Sub Cloud Storage
マルチリージョナルなオブジェクトストレージ BigQuery 大量データ向けのG製DWH、GCSからも読める。
10 新しい Stream データパイプライン 各MSのRamp TopicからDataHubへ集約、GCSとBigQueryへStore
11 各MSごとに設けられたデータの投入口 各Cloud Pub/SubのTopicの役割 Rampsのデータを1つのTopicに集約したTopic Raw DataHub Ramps 構造化されたSchema付きAvroが流れるTopic Structured
DataHub
12 Raw DataHubのデータを出力するGCS bucket 各データストアの役割 Structurd Datahubのデータを出力するGCS bucket Structured DataLake
Raw DataLake Structured DataHubのデータを出力するBig Query DWH
13 AvroとDataflowを使ったETL処理
14 DataHub Avro format {"type": "record", "name": "DataHubAvro", "namespace": "com.mercari.data.model.v3",
"fields": [{ {"name": "uuid", "type": "string"}, {"name": "timestamp", "type": { "type": "long", "logicalType": "timestamp-micros" }}, {"name": "topic_name", "type": "string"}, {"name": "service_name", "type": "string"}, {"name": "log_name", "type": "string"}, {"name": "content_type", "type": ["null", "string"], "default": null}, {"name": "user_agent", "type": ["null", "string"], "default": null}, {"name": "payload","type": "bytes"} ]} } パイプラインの共通フォーマット Avroを採用した理由 - AvroはそのままGCSに書ける - AvroはそのままBQに書ける - Avro fileはBQから直接読める DataHub Avro に含まれるもの - パイプラインのdestination - Schemaの引き当て情報 - データ本体
15 Map処理でRampsからデータを読む Ramps -> Raw DataHubのETL 共通のDataHub Avro formatに変換 全レコードをRaw
DataHubにwrite T L E
16 Raw DataHubからデータを読む Raw DataHub -> Structured DataHub のETL DataHub
Avroのpayloadのbyte[]を、 構造化されたAvroに変換する T L E 全レコードをStructured DataHubにwrite
17 サービスのMS化に伴いパイプラインも進化が求められる 今日のまとめ 不特定多数のdata sourceを想定して設計、開発中 Google Cloud Pratformの各サービスとAvroを利用 We are
hiring! 02 03 04 01 https://mercari.workable.com/jobs/765272