Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Creating a New Stream Data Pipeline on Google C...
Search
Shu Suzuki
July 19, 2019
Programming
1
3.8k
Creating a New Stream Data Pipeline on Google Cloud Platform 20190719
大量のログデータを、より効率的に、より柔軟に扱うためのパイプラインをGCP使って作った話
Shu Suzuki
July 19, 2019
Tweet
Share
More Decks by Shu Suzuki
See All by Shu Suzuki
財務データを題材に、 ETLとは何であるかを考える
shoe116
3
1.7k
Ruby on Railsで作る銘柄スクリーニング
shoe116
0
310
Creating Stream DataPipeline on GCP Using Apache Beam
shoe116
3
2.7k
Business Intelligence Engineer in Mercari
shoe116
0
100
Other Decks in Programming
See All in Programming
Запуск 1С:УХ в крупном энтерпрайзе: мечта и реальность ПМа
lamodatech
0
960
CloudNativePGがCNCF Sandboxプロジェクトになったぞ! 〜CloudNativePGの仕組みの紹介〜
nnaka2992
0
110
Beyond ORM
77web
11
1.6k
Alba: Why, How and What's So Interesting
okuramasafumi
0
230
20241217 競争力強化とビジネス価値創出への挑戦:モノタロウのシステムモダナイズ、開発組織の進化と今後の展望
monotaro
PRO
0
310
見えないメモリを観測する: PHP 8.4 `pg_result_memory_size()` とSQL結果のメモリ管理
kentaroutakeda
0
960
CNCF Project の作者が考えている OSS の運営
utam0k
3
460
Androidアプリのモジュール分割における:x:commonを考える
okuzawats
1
290
Vue.jsでiOSアプリを作る方法
hal_spidernight
0
100
PicoRubyと暮らす、シェアハウスハック
ryosk7
0
240
2025.01.17_Sansan × DMM.swift
riofujimon
2
600
traP の部内 ISUCON とそれを支えるポータル / PISCON Portal
ikura_hamu
0
220
Featured
See All Featured
Navigating Team Friction
lara
183
15k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Designing Experiences People Love
moore
139
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
3k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Mobile First: as difficult as doing things right
swwweet
222
9k
Building Adaptive Systems
keathley
39
2.4k
Site-Speed That Sticks
csswizardry
3
290
Six Lessons from altMBA
skipperchong
27
3.6k
Transcript
1 GCPでStreamなデータパイプライン作った {“id”: “@shoe116”, “team”: “Data Platform”}
2 mercariのlog収集の歴史とマイクロサービス化 GCPでStreamなデータパイプライン作った GCPで作ったStreamなデータパイプラインの概要 AvroとDataFlowを使ったETL処理 今日のまとめ 02 03 04 01
3 - Mercari Data Platform - Stream/Batch Pipeline Developer -
Scala, Python, Java, Go, etc - Apache Beam, Kafka, Storm, Hive, Hadoop… Shu Suzuki @shoe116
4 指定された区間(data sources - data sinks)で データパイプライン? 信頼性のあるデータ処理やデータ転送を 安定的に提供する仕組み 2.
3. 1. 今回は「本番環境のlogを、DWH等の分析環境に届ける」ことを 主眼にしたデータパイプラインについて話します。
5 Mercariのlog収集の歴史と マイクロサービス化
6 既存のlog収集の仕組み モノリスのWebアプリケーションのlogをfluentdで伝搬しbatch処理
7 マイクロサービスのアーキテクチャ データパイプライン的に言うと、data-sourceが不特定多数になる ??
8 GCPで作った Streamなデータパイプラインの概要
9 メッセージ志向ミドルウェア(G製Kafka) 使っているGCPのサービス Beamで記述できる処理エンジン(G製Flink) Cloud Dataflow Cloud Pub/Sub Cloud Storage
マルチリージョナルなオブジェクトストレージ BigQuery 大量データ向けのG製DWH、GCSからも読める。
10 新しい Stream データパイプライン 各MSのRamp TopicからDataHubへ集約、GCSとBigQueryへStore
11 各MSごとに設けられたデータの投入口 各Cloud Pub/SubのTopicの役割 Rampsのデータを1つのTopicに集約したTopic Raw DataHub Ramps 構造化されたSchema付きAvroが流れるTopic Structured
DataHub
12 Raw DataHubのデータを出力するGCS bucket 各データストアの役割 Structurd Datahubのデータを出力するGCS bucket Structured DataLake
Raw DataLake Structured DataHubのデータを出力するBig Query DWH
13 AvroとDataflowを使ったETL処理
14 DataHub Avro format {"type": "record", "name": "DataHubAvro", "namespace": "com.mercari.data.model.v3",
"fields": [{ {"name": "uuid", "type": "string"}, {"name": "timestamp", "type": { "type": "long", "logicalType": "timestamp-micros" }}, {"name": "topic_name", "type": "string"}, {"name": "service_name", "type": "string"}, {"name": "log_name", "type": "string"}, {"name": "content_type", "type": ["null", "string"], "default": null}, {"name": "user_agent", "type": ["null", "string"], "default": null}, {"name": "payload","type": "bytes"} ]} } パイプラインの共通フォーマット Avroを採用した理由 - AvroはそのままGCSに書ける - AvroはそのままBQに書ける - Avro fileはBQから直接読める DataHub Avro に含まれるもの - パイプラインのdestination - Schemaの引き当て情報 - データ本体
15 Map処理でRampsからデータを読む Ramps -> Raw DataHubのETL 共通のDataHub Avro formatに変換 全レコードをRaw
DataHubにwrite T L E
16 Raw DataHubからデータを読む Raw DataHub -> Structured DataHub のETL DataHub
Avroのpayloadのbyte[]を、 構造化されたAvroに変換する T L E 全レコードをStructured DataHubにwrite
17 サービスのMS化に伴いパイプラインも進化が求められる 今日のまとめ 不特定多数のdata sourceを想定して設計、開発中 Google Cloud Pratformの各サービスとAvroを利用 We are
hiring! 02 03 04 01 https://mercari.workable.com/jobs/765272