Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Creating a New Stream Data Pipeline on Google C...
Search
Shu Suzuki
July 19, 2019
Programming
1
3.8k
Creating a New Stream Data Pipeline on Google Cloud Platform 20190719
大量のログデータを、より効率的に、より柔軟に扱うためのパイプラインをGCP使って作った話
Shu Suzuki
July 19, 2019
Tweet
Share
More Decks by Shu Suzuki
See All by Shu Suzuki
Data & Analytics 井戸端会議 #02
shoe116
0
340
Data & Analytics 井戸端会議 #01
shoe116
1
27
財務データを題材に、 ETLとは何であるかを考える
shoe116
9
3k
Ruby on Railsで作る銘柄スクリーニング
shoe116
0
660
Creating Stream DataPipeline on GCP Using Apache Beam
shoe116
3
2.8k
Business Intelligence Engineer in Mercari
shoe116
0
130
Other Decks in Programming
See All in Programming
サーバーサイドのビルド時間87倍高速化
plaidtech
PRO
0
470
ワープロって実は計算機で
pepepper
2
1.4k
TanStack DB ~状態管理の新しい考え方~
bmthd
2
320
デザインシステムが必須の時代に
yosuke_furukawa
PRO
2
100
GUI操作LLMの最新動向: UI-TARSと関連論文紹介
kfujikawa
0
1k
Flutter로 Gemini와 MCP를 활용한 Agentic App 만들기 - 박제창 2025 I/O Extended Seoul
itsmedreamwalker
0
150
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
4
650
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
130
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
8
3.2k
自作OSでDOOMを動かしてみた
zakki0925224
1
1.4k
ライブ配信サービスの インフラのジレンマ -マルチクラウドに至ったワケ-
mirrativ
2
260
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
980
Featured
See All Featured
Docker and Python
trallard
45
3.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Faster Mobile Websites
deanohume
309
31k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Practical Orchestrator
shlominoach
190
11k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Visualization
eitanlees
147
16k
Gamification - CAS2011
davidbonilla
81
5.4k
Become a Pro
speakerdeck
PRO
29
5.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
How STYLIGHT went responsive
nonsquared
100
5.7k
Transcript
1 GCPでStreamなデータパイプライン作った {“id”: “@shoe116”, “team”: “Data Platform”}
2 mercariのlog収集の歴史とマイクロサービス化 GCPでStreamなデータパイプライン作った GCPで作ったStreamなデータパイプラインの概要 AvroとDataFlowを使ったETL処理 今日のまとめ 02 03 04 01
3 - Mercari Data Platform - Stream/Batch Pipeline Developer -
Scala, Python, Java, Go, etc - Apache Beam, Kafka, Storm, Hive, Hadoop… Shu Suzuki @shoe116
4 指定された区間(data sources - data sinks)で データパイプライン? 信頼性のあるデータ処理やデータ転送を 安定的に提供する仕組み 2.
3. 1. 今回は「本番環境のlogを、DWH等の分析環境に届ける」ことを 主眼にしたデータパイプラインについて話します。
5 Mercariのlog収集の歴史と マイクロサービス化
6 既存のlog収集の仕組み モノリスのWebアプリケーションのlogをfluentdで伝搬しbatch処理
7 マイクロサービスのアーキテクチャ データパイプライン的に言うと、data-sourceが不特定多数になる ??
8 GCPで作った Streamなデータパイプラインの概要
9 メッセージ志向ミドルウェア(G製Kafka) 使っているGCPのサービス Beamで記述できる処理エンジン(G製Flink) Cloud Dataflow Cloud Pub/Sub Cloud Storage
マルチリージョナルなオブジェクトストレージ BigQuery 大量データ向けのG製DWH、GCSからも読める。
10 新しい Stream データパイプライン 各MSのRamp TopicからDataHubへ集約、GCSとBigQueryへStore
11 各MSごとに設けられたデータの投入口 各Cloud Pub/SubのTopicの役割 Rampsのデータを1つのTopicに集約したTopic Raw DataHub Ramps 構造化されたSchema付きAvroが流れるTopic Structured
DataHub
12 Raw DataHubのデータを出力するGCS bucket 各データストアの役割 Structurd Datahubのデータを出力するGCS bucket Structured DataLake
Raw DataLake Structured DataHubのデータを出力するBig Query DWH
13 AvroとDataflowを使ったETL処理
14 DataHub Avro format {"type": "record", "name": "DataHubAvro", "namespace": "com.mercari.data.model.v3",
"fields": [{ {"name": "uuid", "type": "string"}, {"name": "timestamp", "type": { "type": "long", "logicalType": "timestamp-micros" }}, {"name": "topic_name", "type": "string"}, {"name": "service_name", "type": "string"}, {"name": "log_name", "type": "string"}, {"name": "content_type", "type": ["null", "string"], "default": null}, {"name": "user_agent", "type": ["null", "string"], "default": null}, {"name": "payload","type": "bytes"} ]} } パイプラインの共通フォーマット Avroを採用した理由 - AvroはそのままGCSに書ける - AvroはそのままBQに書ける - Avro fileはBQから直接読める DataHub Avro に含まれるもの - パイプラインのdestination - Schemaの引き当て情報 - データ本体
15 Map処理でRampsからデータを読む Ramps -> Raw DataHubのETL 共通のDataHub Avro formatに変換 全レコードをRaw
DataHubにwrite T L E
16 Raw DataHubからデータを読む Raw DataHub -> Structured DataHub のETL DataHub
Avroのpayloadのbyte[]を、 構造化されたAvroに変換する T L E 全レコードをStructured DataHubにwrite
17 サービスのMS化に伴いパイプラインも進化が求められる 今日のまとめ 不特定多数のdata sourceを想定して設計、開発中 Google Cloud Pratformの各サービスとAvroを利用 We are
hiring! 02 03 04 01 https://mercari.workable.com/jobs/765272