$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of da...
Search
Shoichiro Nagai(shnagai)
February 25, 2021
Technology
1
2.2k
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of data infrastructure to solve problems in data collection of machine learning PJ
コネヒトマルシェオンライン「機械学習・データ分析」の資料です
Shoichiro Nagai(shnagai)
February 25, 2021
Tweet
Share
More Decks by Shoichiro Nagai(shnagai)
See All by Shoichiro Nagai(shnagai)
テックビジョンを活用した技術戦略の実践/Implementation-of-Technology-Strategy-leveraging-Tech-Vision
shoichiron
0
70
GoでBigQueryを操作する時にStructを使うか悩んでる話/go-bigquery-struct-worries
shoichiron
1
180
AWS Step Functions × AWS SAMで実現する家族ノートの低運用コストETL基盤/ kazokunote-stepfunctions-awssam-etl
shoichiron
4
5.2k
ECS×Fargateで実現する運用コストほぼ0なコンテナ運用の仕組み/ ecs fargate low cost operation
shoichiron
14
18k
ママリで動くカテゴリ類推エンジンの仕組み ~機械学習導入の4つの勘所を添えて~/mamari category analogy
shoichiron
0
790
SIGNATEの練習問題コンペで 57位までスコアを上げた話/ The story of the signate competition
shoichiron
2
5.9k
AWSサービスで実現するバッチ実行環境のコンテナ/サーバレス化/ Container service of batch execution environment realized by AWS service
shoichiron
11
7k
Fargateは何がうれしいのか/ fargate-whats-nice
shoichiron
4
11k
コンテナ導入の正攻法〜ママリのコンテナ移行舞台裏〜/Confrontation-of-Container-Transfer
shoichiron
1
3.8k
Other Decks in Technology
See All in Technology
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
230
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
10
2k
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
12
4.3k
セキュリティAIエージェントの現在と未来 / PSS #2 Takumi Session
flatt_security
3
1.5k
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
10
6.4k
GitLab Duo Agent Platformで実現する“AI駆動・継続的サービス開発”と最新情報のアップデート
jeffi7
0
200
eBPFとwaruiBPF
sat
PRO
4
2.4k
Noを伝える技術2025: 爆速合意形成のためのNICOフレームワーク速習 #pmconf2025
aki_iinuma
2
1.8k
M5UnifiedとPicoRubyで楽しむM5シリーズ
kishima
0
120
Oracle Cloud Infrastructure:2025年11月度サービス・アップデート
oracle4engineer
PRO
2
170
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
1
360
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
150
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Pragmatic Product Professional
lauravandoore
37
7.1k
Making Projects Easy
brettharned
120
6.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Agile that works and the tools we love
rasmusluckow
331
21k
Documentation Writing (for coders)
carmenintech
76
5.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Building Adaptive Systems
keathley
44
2.9k
Transcript
ػցֶश1+ͷσʔλऩूʹ͓͚Δ՝Λղܾ͢Δ σʔλج൫ͷऔΈ ӬҪউҰ!TIOBHBJ ίωώτϚϧγΣΦϯϥΠϯʮػցֶशɾσʔλੳʯ
ࣗݾհ ओͳ׆ಈ "84Πϯϑϥؔ࿈Ͱͷొஃ͕ଟ͘ػցֶशΠϕϯτͰͷొஃճ ίωώτΤϯδχΞϒϩάIUUQTUFDIDPOOFIJUPDPNBSDIJWFBVUIPSOBHBJT ίωώτגࣜձࣾɹςΫϊϩδʔਪਐGɹ Πϯϑϥ/σʔλɾػցֶश @shnagai ӬҪউҰ
σʔλج൫Λ࡞Δ্Ͱɺ ಛʹػցֶश1+Ͱͷར༻ʹ͋ͨΓߟ͍͑ͯΔ͜ͱΛ͠·͢ɻ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά Aͱ͍͏՝Λղͨ͘Ίʹ ߦಈϩάͱϚελʔσʔλΛ ֻ͚߹ΘͤͯϞσϧΛ࡞Δͧʂʂ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά σʔλ͕ͳ͍ͱԿग़དྷͳ͍ͷͰɺ ·ͣඞཁͳσʔλΛϩʔΧϧʹ࣋ͬͯ͘Δ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ᶆσʔλ४උऴΘͬͨͷͰ ੳͯ͠લॲཧͯ͠ϞσϦϯά͍ͯͧ͘͠ʂʂ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
ࢼߦࡨޡͷ্ɺखݩͰྑͦ͞͏ͳϞσϧ͕ग़དྷͨʂʂ
1P$͢ΔͨΊʹຊ൪Ͱಈ͘Ϟσϧ࡞Δͧʂʂ
Ϟσϧ࡞ͷલʹఆظతͳσʔλऩू͕ඞཁ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ϞσϧΛ࡞Δલʹɺ ᶃᶄᶅͷσʔλऩूͱܗ͢ΔॲཧΛॻ͍ͯ ຊ൪/stgͰಈ͔͢ඞཁ͕͋Δ… ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ
ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ खݩͰ࡞ͬͨσʔλΛఆظతʹߋ৽͍͚ͨͩ͠ͳͷʹ ѹతʹߟྀ͢Δ͜ͱ͕ଟ͘πϥΠ
ࣗલͰॻ͘ͱେมͳσʔλऩूσʔλج൫Ͱٵऩ
ඞཁͳσʔλલͬͯσʔλج൫Ͱऩू ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞
৽ͨʹσʔλऩूॲཧΛॻ͘ඞཁͳ͍ ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞ ։ൃத
ࢦ͍ͯ͠Δະདྷ w %8)ج൫Λ͑Δ͜ͱͰػցֶश1+ʹ͓͚Δσʔλऩूͷ՝Λղܾ w .-ΤϯδχΞσʔλαΠΤϯςΟετ࠷ՁΛൃشग़དྷΔ ϞσϦϯάνϡʔχϯάʹྗ w εϐʔσΟʔʹػցֶशͷ1P$Λճͤͯ݁Ռͱͯ͠ޭ֬Λ্͛Δ
͞ΒͳΔαʔϏεͷػցֶश׆༻ͷΛݻΊΔͨΊʹ σʔλج൫Ұॹʹҭ͍ͯͯ͘ 8F`SF)JSJOH