Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of da...
Search
Shoichiro Nagai(shnagai)
February 25, 2021
Technology
1
2.2k
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of data infrastructure to solve problems in data collection of machine learning PJ
コネヒトマルシェオンライン「機械学習・データ分析」の資料です
Shoichiro Nagai(shnagai)
February 25, 2021
Tweet
Share
More Decks by Shoichiro Nagai(shnagai)
See All by Shoichiro Nagai(shnagai)
テックビジョンを活用した技術戦略の実践/Implementation-of-Technology-Strategy-leveraging-Tech-Vision
shoichiron
0
39
GoでBigQueryを操作する時にStructを使うか悩んでる話/go-bigquery-struct-worries
shoichiron
1
160
AWS Step Functions × AWS SAMで実現する家族ノートの低運用コストETL基盤/ kazokunote-stepfunctions-awssam-etl
shoichiron
4
5k
ECS×Fargateで実現する運用コストほぼ0なコンテナ運用の仕組み/ ecs fargate low cost operation
shoichiron
14
18k
ママリで動くカテゴリ類推エンジンの仕組み ~機械学習導入の4つの勘所を添えて~/mamari category analogy
shoichiron
0
760
SIGNATEの練習問題コンペで 57位までスコアを上げた話/ The story of the signate competition
shoichiron
2
5.7k
AWSサービスで実現するバッチ実行環境のコンテナ/サーバレス化/ Container service of batch execution environment realized by AWS service
shoichiron
11
6.7k
Fargateは何がうれしいのか/ fargate-whats-nice
shoichiron
4
11k
コンテナ導入の正攻法〜ママリのコンテナ移行舞台裏〜/Confrontation-of-Container-Transfer
shoichiron
1
3.6k
Other Decks in Technology
See All in Technology
OTel meets Wasm: プラグイン機構としてのWebAssemblyから見る次世代のObservability
lycorptech_jp
PRO
1
300
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
810
データプレーンプログラミングとは? DPU&スイッチASICの開発経験から語る
ebiken
PRO
1
270
エンジニアが組織に馴染むために勉強会を主催してチームの壁を越える
ohmori_yusuke
2
120
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
SmartHRの複数のチームにおけるMCPサーバーの活用事例と課題
yukisnow1823
2
1.2k
データ戦略部門 紹介資料
sansan33
PRO
1
3.1k
大規模PaaSにおける監視基盤の構築と効率化の道のり
lycorptech_jp
PRO
0
180
CloudBruteによる外部からのS3バケットの探索・公開の発見について / 20250605 Kumiko Hennmi
shift_evolve
3
190
What's Next in OpenShift Q2 CY2025
redhatlivestreaming
1
830
TechBull Membersの開発進捗どうですか!?
rvirus0817
0
220
AIとSREの未来 / AI and SRE
ymotongpoo
2
1.4k
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.3k
How to Ace a Technical Interview
jacobian
276
23k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Become a Pro
speakerdeck
PRO
28
5.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
1
82
It's Worth the Effort
3n
184
28k
Statistics for Hackers
jakevdp
799
220k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Designing for Performance
lara
608
69k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
850
Transcript
ػցֶश1+ͷσʔλऩूʹ͓͚Δ՝Λղܾ͢Δ σʔλج൫ͷऔΈ ӬҪউҰ!TIOBHBJ ίωώτϚϧγΣΦϯϥΠϯʮػցֶशɾσʔλੳʯ
ࣗݾհ ओͳ׆ಈ "84Πϯϑϥؔ࿈Ͱͷొஃ͕ଟ͘ػցֶशΠϕϯτͰͷొஃճ ίωώτΤϯδχΞϒϩάIUUQTUFDIDPOOFIJUPDPNBSDIJWFBVUIPSOBHBJT ίωώτגࣜձࣾɹςΫϊϩδʔਪਐGɹ Πϯϑϥ/σʔλɾػցֶश @shnagai ӬҪউҰ
σʔλج൫Λ࡞Δ্Ͱɺ ಛʹػցֶश1+Ͱͷར༻ʹ͋ͨΓߟ͍͑ͯΔ͜ͱΛ͠·͢ɻ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά Aͱ͍͏՝Λղͨ͘Ίʹ ߦಈϩάͱϚελʔσʔλΛ ֻ͚߹ΘͤͯϞσϧΛ࡞Δͧʂʂ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά σʔλ͕ͳ͍ͱԿग़དྷͳ͍ͷͰɺ ·ͣඞཁͳσʔλΛϩʔΧϧʹ࣋ͬͯ͘Δ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ᶆσʔλ४උऴΘͬͨͷͰ ੳͯ͠લॲཧͯ͠ϞσϦϯά͍ͯͧ͘͠ʂʂ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
ࢼߦࡨޡͷ্ɺखݩͰྑͦ͞͏ͳϞσϧ͕ग़དྷͨʂʂ
1P$͢ΔͨΊʹຊ൪Ͱಈ͘Ϟσϧ࡞Δͧʂʂ
Ϟσϧ࡞ͷલʹఆظతͳσʔλऩू͕ඞཁ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ϞσϧΛ࡞Δલʹɺ ᶃᶄᶅͷσʔλऩूͱܗ͢ΔॲཧΛॻ͍ͯ ຊ൪/stgͰಈ͔͢ඞཁ͕͋Δ… ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ
ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ खݩͰ࡞ͬͨσʔλΛఆظతʹߋ৽͍͚ͨͩ͠ͳͷʹ ѹతʹߟྀ͢Δ͜ͱ͕ଟ͘πϥΠ
ࣗલͰॻ͘ͱେมͳσʔλऩूσʔλج൫Ͱٵऩ
ඞཁͳσʔλલͬͯσʔλج൫Ͱऩू ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞
৽ͨʹσʔλऩूॲཧΛॻ͘ඞཁͳ͍ ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞ ։ൃத
ࢦ͍ͯ͠Δະདྷ w %8)ج൫Λ͑Δ͜ͱͰػցֶश1+ʹ͓͚Δσʔλऩूͷ՝Λղܾ w .-ΤϯδχΞσʔλαΠΤϯςΟετ࠷ՁΛൃشग़དྷΔ ϞσϦϯάνϡʔχϯάʹྗ w εϐʔσΟʔʹػցֶशͷ1P$Λճͤͯ݁Ռͱͯ͠ޭ֬Λ্͛Δ
͞ΒͳΔαʔϏεͷػցֶश׆༻ͷΛݻΊΔͨΊʹ σʔλج൫Ұॹʹҭ͍ͯͯ͘ 8F`SF)JSJOH