Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of da...
Search
Shoichiro Nagai(shnagai)
February 25, 2021
Technology
1
2.2k
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of data infrastructure to solve problems in data collection of machine learning PJ
コネヒトマルシェオンライン「機械学習・データ分析」の資料です
Shoichiro Nagai(shnagai)
February 25, 2021
Tweet
Share
More Decks by Shoichiro Nagai(shnagai)
See All by Shoichiro Nagai(shnagai)
テックビジョンを活用した技術戦略の実践/Implementation-of-Technology-Strategy-leveraging-Tech-Vision
shoichiron
0
74
GoでBigQueryを操作する時にStructを使うか悩んでる話/go-bigquery-struct-worries
shoichiron
1
190
AWS Step Functions × AWS SAMで実現する家族ノートの低運用コストETL基盤/ kazokunote-stepfunctions-awssam-etl
shoichiron
4
5.2k
ECS×Fargateで実現する運用コストほぼ0なコンテナ運用の仕組み/ ecs fargate low cost operation
shoichiron
14
18k
ママリで動くカテゴリ類推エンジンの仕組み ~機械学習導入の4つの勘所を添えて~/mamari category analogy
shoichiron
0
800
SIGNATEの練習問題コンペで 57位までスコアを上げた話/ The story of the signate competition
shoichiron
2
5.9k
AWSサービスで実現するバッチ実行環境のコンテナ/サーバレス化/ Container service of batch execution environment realized by AWS service
shoichiron
11
7k
Fargateは何がうれしいのか/ fargate-whats-nice
shoichiron
4
11k
コンテナ導入の正攻法〜ママリのコンテナ移行舞台裏〜/Confrontation-of-Container-Transfer
shoichiron
1
3.8k
Other Decks in Technology
See All in Technology
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
270
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
970
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
510
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
260
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
410
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
1
480
ESXi のAIOps だ!2025冬
unnowataru
0
370
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
670
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
150
特別捜査官等研修会
nomizone
0
580
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
Featured
See All Featured
Google's AI Overviews - The New Search
badams
0
870
Paper Plane (Part 1)
katiecoart
PRO
0
2.1k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Designing for humans not robots
tammielis
254
26k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
91
Six Lessons from altMBA
skipperchong
29
4.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Test your architecture with Archunit
thirion
1
2.1k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
Between Models and Reality
mayunak
0
150
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Transcript
ػցֶश1+ͷσʔλऩूʹ͓͚Δ՝Λղܾ͢Δ σʔλج൫ͷऔΈ ӬҪউҰ!TIOBHBJ ίωώτϚϧγΣΦϯϥΠϯʮػցֶशɾσʔλੳʯ
ࣗݾհ ओͳ׆ಈ "84Πϯϑϥؔ࿈Ͱͷొஃ͕ଟ͘ػցֶशΠϕϯτͰͷొஃճ ίωώτΤϯδχΞϒϩάIUUQTUFDIDPOOFIJUPDPNBSDIJWFBVUIPSOBHBJT ίωώτגࣜձࣾɹςΫϊϩδʔਪਐGɹ Πϯϑϥ/σʔλɾػցֶश @shnagai ӬҪউҰ
σʔλج൫Λ࡞Δ্Ͱɺ ಛʹػցֶश1+Ͱͷར༻ʹ͋ͨΓߟ͍͑ͯΔ͜ͱΛ͠·͢ɻ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά Aͱ͍͏՝Λղͨ͘Ίʹ ߦಈϩάͱϚελʔσʔλΛ ֻ͚߹ΘͤͯϞσϧΛ࡞Δͧʂʂ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά σʔλ͕ͳ͍ͱԿग़དྷͳ͍ͷͰɺ ·ͣඞཁͳσʔλΛϩʔΧϧʹ࣋ͬͯ͘Δ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ᶆσʔλ४උऴΘͬͨͷͰ ੳͯ͠લॲཧͯ͠ϞσϦϯά͍ͯͧ͘͠ʂʂ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
ࢼߦࡨޡͷ্ɺखݩͰྑͦ͞͏ͳϞσϧ͕ग़དྷͨʂʂ
1P$͢ΔͨΊʹຊ൪Ͱಈ͘Ϟσϧ࡞Δͧʂʂ
Ϟσϧ࡞ͷલʹఆظతͳσʔλऩू͕ඞཁ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ϞσϧΛ࡞Δલʹɺ ᶃᶄᶅͷσʔλऩूͱܗ͢ΔॲཧΛॻ͍ͯ ຊ൪/stgͰಈ͔͢ඞཁ͕͋Δ… ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ
ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ खݩͰ࡞ͬͨσʔλΛఆظతʹߋ৽͍͚ͨͩ͠ͳͷʹ ѹతʹߟྀ͢Δ͜ͱ͕ଟ͘πϥΠ
ࣗલͰॻ͘ͱେมͳσʔλऩूσʔλج൫Ͱٵऩ
ඞཁͳσʔλલͬͯσʔλج൫Ͱऩू ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞
৽ͨʹσʔλऩूॲཧΛॻ͘ඞཁͳ͍ ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞ ։ൃத
ࢦ͍ͯ͠Δະདྷ w %8)ج൫Λ͑Δ͜ͱͰػցֶश1+ʹ͓͚Δσʔλऩूͷ՝Λղܾ w .-ΤϯδχΞσʔλαΠΤϯςΟετ࠷ՁΛൃشग़དྷΔ ϞσϦϯάνϡʔχϯάʹྗ w εϐʔσΟʔʹػցֶशͷ1P$Λճͤͯ݁Ռͱͯ͠ޭ֬Λ্͛Δ
͞ΒͳΔαʔϏεͷػցֶश׆༻ͷΛݻΊΔͨΊʹ σʔλج൫Ұॹʹҭ͍ͯͯ͘ 8F`SF)JSJOH