Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20170829_iOSLT_機械学習とVision.framework
Search
shtnkgm
September 20, 2017
Programming
0
89
20170829_iOSLT_機械学習とVision.framework
機械学習の基礎的な内容を交えつつ、iOS11で追加されたVision.frameworkの説明とデモ
shtnkgm
September 20, 2017
Tweet
Share
More Decks by shtnkgm
See All by shtnkgm
Combine入門
shtnkgm
2
290
Property Wrappers
shtnkgm
0
350
Saliency Detection
shtnkgm
0
53
パフォーマンス改善とユニットテスト
shtnkgm
4
1.7k
iOSのコードベースレイアウト
shtnkgm
2
780
20190117_iOSLT_CBLinSwift.pdf
shtnkgm
0
95
SwiftとFunctional Reactive Programming
shtnkgm
0
180
20180710_iOSLT_iOSでDarkModeを実装する
shtnkgm
0
93
20180410_iOSLT_SwiftとProtocol-OrientedProgramming
shtnkgm
0
110
Other Decks in Programming
See All in Programming
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
910
CSC305 Lecture 08
javiergs
PRO
0
280
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
500
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
310
CSC305 Lecture 11
javiergs
PRO
0
280
Domain-centric? Why Hexagonal, Onion, and Clean Architecture Are Answers to the Wrong Question
olivergierke
3
980
Software Architecture
hschwentner
6
2.3k
One Enishi After Another
snoozer05
PRO
0
160
3年ぶりにコードを書いた元CTOが Claude Codeと30分でMVPを作った話
maikokojima
0
650
Six and a half ridiculous things to do with Quarkus
hollycummins
0
220
マンガアプリViewerの大画面対応を考える
kk__777
0
310
開発組織の戦略的な役割と 設計スキル向上の効果
masuda220
PRO
10
1.7k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
It's Worth the Effort
3n
187
28k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Faster Mobile Websites
deanohume
310
31k
How to train your dragon (web standard)
notwaldorf
97
6.3k
A Tale of Four Properties
chriscoyier
161
23k
For a Future-Friendly Web
brad_frost
180
10k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Building Applications with DynamoDB
mza
96
6.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Transcript
ػցֶशͱVision.framework Shota Nakagami / @shtnkgm 2017/8/29
͢༰ — Vision.frameworkͷجຊతͳઆ໌ — ػցֶशͷ֓ཁ — VisionΛ༻͍ͨΧϝϥը૾Λผ͢ΔαϯϓϧΞϓϦ
Vision.frameworkͱ — iOS11͔ΒՃ͞Εͨը૾ೝࣝAPIΛఏڙ͢ΔϑϨʔϜϫʔ Ϋ — ಉ͘͡iOS11͔ΒՃ͞ΕͨػցֶशϑϨʔϜϫʔΫͷCore MLΛநԽ
ػցֶशελοΫ
χϡʔϥϧωοτϫʔΫͱ — ػցֶशख๏ͷҰछ — ਓؒͷͷਆܦճ࿏Λ ࣜϞσϧͰදͨ͠ͷ — NNͱུ͞ΕΔ ʢDNN1ɺRNN2ɺCNN3ͳͲʣ 3
Convolutional Neural NetworkʢΈࠐΈχϡʔϥϧωο τϫʔΫʣ 2 Recurrent Neural Networkʢ࠶ؼܕχϡʔϥϧωοτϫ ʔΫʣ 1 Deep Neural NetworkʢσΟʔϓχϡʔϥϧωοτϫʔ Ϋʣ
VisionͰೝࣝͰ͖Δͷ
VisionͰೝࣝͰ͖Δͷᶃ — إݕग़ / Face Detection and Recognition — όʔίʔυݕग़
/ Barcode Detection — ը૾ͷҐஔ߹Θͤ / Image Alignment Analysis — ςΩετݕग़ / Text Detection — ਫฏઢݕग़ / Horizon Detection
VisionͰೝࣝͰ͖Δͷᶄ ػցֶशϞσϧͷ༻ҙ͕ඞཁͳͷ — ΦϒδΣΫτݕग़ͱτϥοΩϯά / Object Detection and Tracking —
ػցֶशʹΑΔը૾ੳ / Machine Learning Image Analysis
Χϝϥը૾Λผ͢ΔαϯϓϧΞ ϓϦΛͭ͘Δ
αϯϓϧΞϓϦ֓ཁ — VisionͷʮػցֶशʹΑΔը૾ੳʯػೳΛར༻ — ΧϝϥͰөͨ͠ը૾Λผ͠ɺϞϊͷ໊લΛग़ྗ
ػցֶशʹΑΔը૾ೝࣝͷྲྀΕ 1. ֶशͷͨΊը૾σʔλΛऩूʢڭࡐΛूΊΔʣ 2. ֶश༻σʔλ͔ΒɺػցֶशΞϧΰϦζϜʹΑΓϞσϧΛ࡞  ※Ϟσϧɾɾɾ͑Λग़ͯ͘͠ΕΔϩδοΫ ྨɿ͜ͷը૾ݘʁೣʁ ճؼɿ༧ଌʢ໌ͷגՁʁʣ 3.
ֶशࡁΈϞσϧΛ༻͍ͯະͷը૾Λผʢ࣮ફʣ
Ϟσϧ࡞ׂѪ — ֶशσʔλͷऩूɾܗׂΓͱେม — ͦΕͳΓͷϚγϯεϖοΫɺܭࢉ͕࣌ؒඞཁ — ػցֶशʹؔ͢Δ͕ࣝඞཁ
Ϟσϧͷ༻ҙ ؆୯ͷͨΊɺֶशࡁΈϞσϧΛར༻ AppleͷαΠτͰ͞Ε͍ͯΔʢ.mlmodelܗࣜʣ https://developer.apple.com/machine-learning/
ϞσϧҰཡ ϞσϧʹΑͬͯಘҙͳը૾ͷछྨ༰ྔ͕ҟͳΔ ʢ5MBʙ553.5MBʣ — MobileNets — SqueezeNet — Places205-GoogLeNet —
ResNet50 — Inception v3 — VGG16
ࠓճResNet50Λར༻ — थɺಈɺ৯ɺΓɺਓͳͲͷ1000छྨͷΧςΰϦ — αΠζ102.6 MB — MITϥΠηϯε
ϞσϧΛϓϩδΣΫτʹࠐΉ
Xcodeʹυϥοά&υϩοϓ
ϞσϧΫϥε͕ࣗಈੜ͞ΕΔ ࣗಈͰϞσϧ໊.swiftͱ͍͏໊લͰϞσϧΫϥε͕࡞͞ΕΔ ྫ) Resnet50.swiftʢҰ෦ൈਮʣ
Χϝϥը૾ͷΩϟϓνϟॲཧ
private func startCapture() { let captureSession = AVCaptureSession() captureSession.sessionPreset =
AVCaptureSessionPresetPhoto // ೖྗͷࢦఆ let captureDevice = AVCaptureDevice.defaultDevice(withMediaType: AVMediaTypeVideo) guard let input = try? AVCaptureDeviceInput(device: captureDevice) else { return } guard captureSession.canAddInput(input) else { return } captureSession.addInput(input) // ग़ྗͷࢦఆ let output: AVCaptureVideoDataOutput = AVCaptureVideoDataOutput() output.setSampleBufferDelegate(self, queue: DispatchQueue(label: "VideoQueue")) guard captureSession.canAddOutput(output) else { return } captureSession.addOutput(output) // ϓϨϏϡʔͷࢦఆ guard let previewLayer = AVCaptureVideoPreviewLayer(session: captureSession) else { return } previewLayer.videoGravity = AVLayerVideoGravityResizeAspectFill previewLayer.frame = view.bounds view.layer.insertSublayer(previewLayer, at: 0) // Ωϟϓνϟ։࢝ captureSession.startRunning() }
ࡱӨϑϨʔϜຖʹݺΕΔDeleate extension ViewController: AVCaptureVideoDataOutputSampleBufferDelegate { func captureOutput(_ output: AVCaptureOutput!, didOutputSampleBuffer
sampleBuffer: CMSampleBuffer!, from connection: AVCaptureConnection!) { // CMSampleBufferΛCVPixelBufferʹม guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return } // ͜ͷதʹVision.frameworkͷॲཧΛॻ͍͍ͯ͘ʢը૾ೝࣝ෦ʣ } }
ը૾ೝࣝ෦ͷॲཧ
VisionͰར༻͢ΔओͳΫϥε — VNCoreMLModel — VNCoreMLRequest — VNImageRequestHandler — VNObservation
VNCoreMLModel — CoreMLͷϞσϧΛVisionͰѻ͏ͨΊͷίϯςφΫϥε
VNCoreMLRequest — CoreMLʹը૾ೝࣝΛཁٻ͢ΔͨΊͷΫϥε — ೝࣝ݁ՌϞσϧͷग़ྗܗࣜʹΑΓܾ·Δ — ը૾→Ϋϥεʢྨ݁Ռʣ — ը૾→ಛྔ —
ը૾→ը૾
VNImageRequestHandler — Ұͭͷը૾ʹର͠ɺҰͭҎ্ͷը૾ೝࣝॲཧ ʢVNCoreMLRequestʣΛ࣮ߦ͢ΔͨΊͷΫϥε — ॳظԽ࣌ʹೝࣝରͷը૾ܗࣜΛࢦఆ͢Δ — CVPixelBuffer — CIImage
— CGImage
VNObservation — ը૾ೝࣝ݁ՌͷநΫϥε — ݁Ռͱͯ͜͠ͷΫϥεͷαϒΫϥεͷ͍ͣΕ͔͕ฦ͞ΕΔ — ೝࣝͷ֬৴Λද͢confidenceϓϩύςΟΛ࣋ͭ ʢVNConfidence=FloatͷΤΠϦΞεʣ
VNObservationαϒΫϥε — VNClassificationObservation ྨ໊ͱͯ͠identifierϓϩύςΟΛ࣋ͭ — VNCoreMLFeatureValueObservation ಛྔσʔλͱͯ͠featureValueϓϩύςΟΛ࣋ͭ — VNPixelBufferObservation ը૾σʔλͱͯ͠pixelBufferϓϩύςΟΛ࣋ͭ
·ͱΊΔͱ… — VNCoreMLModelʢΈࠐΜͩϞσϧʣ — VNCoreMLRequestʢը૾ೝࣝͷϦΫΤετʣ — VNImageRequestHandlerʢϦΫΤετͷ࣮ߦʣ — VNObservationʢೝࣝ݁Ռʣ
۩ମతͳ࣮ίʔυ
ϞσϧΫϥεͷॳظԽ // CoreMLͷϞσϧΫϥεͷॳظԽ guard let model = try? VNCoreMLModel(for: Resnet50().model)
else { return }
ը૾ೝࣝϦΫΤετΛ࡞ // ը૾ೝࣝϦΫΤετΛ࡞ʢҾϞσϧͱϋϯυϥʣ let request = VNCoreMLRequest(model: model) { [weak
self] (request: VNRequest, error: Error?) in guard let results = request.results as? [VNClassificationObservation] else { return } // ผ݁Ռͱͦͷ֬৴Λ্Ґ3݅·Ͱදࣔ // identifierΧϯϚ۠ΓͰෳॻ͔Ε͍ͯΔ͜ͱ͕͋ΔͷͰɺ࠷ॳͷ୯ޠͷΈऔಘ͢Δ let displayText = results.prefix(3) .flatMap { "\(Int($0.confidence * 100))% \($0.identifier.components(separatedBy: ", ")[0])" } .joined(separator: "\n") DispatchQueue.main.async { self?.textView.text = displayText } }
ը૾ೝࣝϦΫΤετΛ࣮ߦ // CVPixelBufferʹର͠ɺը૾ೝࣝϦΫΤετΛ࣮ߦ try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])
ը૾ೝࣝ෦ͷܗ guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
guard let model = try? VNCoreMLModel(for: Resnet50().model) else { return } let request = VNCoreMLRequest(model: model) { [weak self] (request: VNRequest, error: Error?) in guard let results = request.results as? [VNClassificationObservation] else { return } let displayText = results.prefix(3) .flatMap { "\(Int($0.confidence * 100))% \($0.identifier.components(separatedBy: ", ")[0])" } .joined(separator: "\n") DispatchQueue.main.async { self?.textView.text = displayText } } try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])
σϞಈը
None
tabbyͬͯԿʁ
tabby = τϥωίʂ τϥωίͱɺτϥͷΑ͏ͳࣶ༷Λ࣋ͭωίͷ͜ͱͰ͋ΔɻλϏʔͱݺΕΔɻτϥೣ ετϥΠϓͷଞʹɺ్ࣶ༷͕Εͯɺൗ༷ɺᤳᤶ൝ɺࡉ͔ࣶ༷͘Λ్Εͤͯͨ͞ ͷ͕͋Γɺଟ༷Ͱ͋ΔɻʢҾ༻: ΟΩϖσΟΞʣ
·ͱΊ
— ֶशࡁΈϞσϧ͕͋Εɺ࣮ࣗମ؆୯! — ωίͷछྨڭ͑ͯ͘ΕΔ" — ͋ͱϞσϧࣗͰ࡞ΕΔΑ͏ʹͳΕͬͱ෯͕͕ Δ
ॳΓ͔ͨͬͨ͜ͱ — ΠϯελάϥϜ༻ͷࣗಈϋογϡλά͚ΞϓϦ — ϋογϡλάΛ͢ΩϟϓγϣϯAPIطʹഇࢭʘ(^o^)ʗ
αϯϓϧίʔυ ࠓճ͝հͨ͠αϯϓϧίʔυͪ͜Βʹஔ͍ͯ͋Γ·͢ɻ https://github.com/shtnkgm/VisionFrameworkSample ※εΫϦʔϯγϣοτͷެ։ʹNDAҙ
͓ΘΓ
ࢀߟࢿྉᶃ — Build more intelligent apps with machine learning. /
Apple — Vision / Apple Developer Documentation — ʲWWDC2017ʳVision.framework ͷςΩετݕग़Λࢼ͠ ͯΈ·ͨ͠ʲiOS11ʳ — Keras + iOS11 CoreML + Vision Framework ʹΑΔɺ ΫϩإࣝผΞϓϦͷ։ൃ — [Core ML] .mlmodel ϑΝΠϧΛ࡞͢Δ / ϑΣϯϦϧ
ࢀߟࢿྉᶄ — [iOS 11] CoreMLͰը૾ͷࣝผΛࢼͯ͠Έ·ͨ͠ ʢVision.FrameworkΛΘͳ͍ύλʔϯʣ #WWDC2017 — Places205-GoogLeNetͰॴͷఆ /
fabo.io — iOSDCͷϦδΣΫτίϯͰʰiOSͱσΟʔϓϥʔχϯάʱʹ ͍ͭͯ͠·ͨ͠Add Star — [iOS 10][χϡʔϥϧωοτϫʔΫ] OSSͰAccelerateʹՃ ͞ΕͨBNNSΛཧղ͢Δ ~XORฤ~