Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
Search
shunsukeaihara
January 17, 2015
Technology
11
3.4k
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
shunsukeaihara
January 17, 2015
Tweet
Share
More Decks by shunsukeaihara
See All by shunsukeaihara
BONXを支える技術:発話区間検出(VAD)の話/Akerun & BONX Tech Talk
shunsukeaihara
4
7.5k
Goのnet.TCPConnの話/shibuya.go01
shunsukeaihara
2
740
Norikra in Gunosy Network Ads@Norikra meetup #2
shunsukeaihara
1
5.9k
LevelDB on S3 As A KVS
shunsukeaihara
1
2.7k
色恒常性仮説に基づく色補正ライブラリcolorcorrect / 2015-01-31-kantocv27
shunsukeaihara
3
2.2k
ゼロから始めた Gunosyアドサーバ開発運用記 / 2014-12-16-dots
shunsukeaihara
6
1.1k
Gunosy.Go#5 index/io/log
shunsukeaihara
0
150
Gunosy.go#2 package/compress
shunsukeaihara
0
95
Other Decks in Technology
See All in Technology
これまでの計測・開発・デプロイ方法全部見せます! / Findy ISUCON 2024-11-14
tohutohu
3
370
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.4k
SSMRunbook作成の勘所_20241120
koichiotomo
3
160
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
10
1.2k
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
120
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
TypeScript、上達の瞬間
sadnessojisan
46
13k
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
130
強いチームと開発生産性
onk
PRO
35
11k
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.7k
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
3
630
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Agile that works and the tools we love
rasmusluckow
327
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
A Philosophy of Restraint
colly
203
16k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Docker and Python
trallard
40
3.1k
What's in a price? How to price your products and services
michaelherold
243
12k
A better future with KSS
kneath
238
17k
Code Reviewing Like a Champion
maltzj
520
39k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
655
59k
Transcript
SparkʹΑΔࢄॲཧ (ͱPythonͰͷࢄॲཧ) Gunosy Inc. Shunsuke Aihara
ࣗݾհ • ҄൧ݪढ़հ (http://argmax.jp) @shunsukeaihara • GunosyͷϚωʔδϟʔ • ࠂ৴γεςϜͷ։ൃશମͱR&DܥΛ୲ •
ઐ: ܭࢉݴޠֶ • PythonͱඇಉظࢄγεςϜΛΉ • ը૾ॲཧɾԻ৴߸ॲཧͰ͍Ζ͍ΖϥΠϒϥϦ࡞ͬͯΔ • https://bitbucket.org/aihara
Agenda • Spark֓ཁ • ࢄॲཧ(ͱSpark)ͷ • GunosyͰͷSparkͷϢʔεέʔε • PythonͰͷࢄॲཧΤίγεςϜ
Sparkʹ͍ͭͯ(1) • HadoopͷΤίγεςϜ(HDFS, MESOS, YARN)ͱ࿈ܞ͢ΔΦϯϝϞ Ϧࢄॲཧܥ • Resillient Distributed Datasetsͱ͍͏োੑΛ࣋ͬͨࢄσʔλߏ
ʹର͢Δࢄϓϩάϥϛϯάڥ • RDDʹద༻͢ΔฒྻܭࢉΛɺߴ֊ؔͷνΣΠϯͷܗͰScalaɺ PythonͰ࣮ߦ • immutableͳσʔλߏ • RDDͷཁૉΫϥελͷΦϯϝϞϦʹࢄɾϨϓϦέʔγϣϯ • ഁଛɾϩετͨ͠σʔλӬଓԽͨ͠ݩσʔλ͔Β෮ݩ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
ࢄॲཧ(ͱSpark)ͷ
େنσʔλࢄॲཧͷ؊ • ΫϥελϚωʔδϝϯτ • σʔλͷࢄஔͷࣗಈԽ • σʔλଟॏԽ/ฒྻReadʹΑΔߴԽ • σʔλϩʔΧϦςΟΛอͬͨܭࢉ •
োੑ / ࠶ૹɾ࠶ܭࢉॲཧ
HadoopʹࢸΔ·Ͱ • ෳࡶͳฒྻॲཧϝοηʔδύογϯάͰಠࣗʹ࣮͢Δͱେม • εέϧτϯฒྻϓϩάϥϛϯά(Cole, 1989) • සग़͢ΔฒྻܭࢉύλʔϯͷΈ߹ΘͤͰɺ༷ʑͳฒྻॲཧΛߏతʹߏங ͢ΔؔϓϩάϥϛϯάͷΈͱෳͷ࣮ •
σʔλฒྻεέϧτϯ(map, fold/reduce, filter, zip…) • σʔλͷҟͳΔ෦ʹɼಉ࣌ʹಉ͡ૢ࡞Λߦ͏ܭࢉύλʔϯ • λεΫฒྻεέϧτϯ(pipe, farm…) • σʔλͷετϦʔϜʹରͯ͠ɼͦΕͧΕܭࢉΛద༻ͨ͠σʔλετϦʔ ϜΛฦ͢ύλʔϯ
εέϧτϯฒྻϓϩάϥϛϯά މৼߐ ؠ࡚ӳ࠸ εέϧτϯฒྻϓϩάϥϛϯάใॲཧ 7PM /P QQ
HadoopҎલͷࢄॲཧ • MPI άϦουγΣϧΛ༻͍࣮ͯ • σʔλͷஔࣗͰϚωʔδ • ڞ༗ϝϞϦ͔ڞ༗FSʹࣗͰஔ͕લఏ • ڊେσʔλͷஔͱͯ໘
• োੑಠ࣮ࣗͰอূ • ϝϞϦʹࡌΓΒͳ͍σʔλΛѻ͏ͷ͍͠
T-shirts message@WOMPAT2001 “Life is too short for MPI.”
Hadoop͕ղܾͨ͠ͷ • Պֶܭࢉ͚Ͱͳ͘େنσʔλʹಛԽ • ڊେσʔλͷஔͱॲཧͷ࣮ߦΛࣗಈཧ • HDFSͰͷࣗಈࢄஔͱɺஔॴͰMAPॲཧ
HadoopҎ߱ͷ৽ͨͳχʔζ • Hadoop / Hiveεϧʔϓοτॏࢹͷόονܥ • σʔλαΠΤϯςΟετͷχʔζΠϯλϥΫςΟϒͳ ੳɾϦΞϧλΠϜॲཧ • ॲཧֻ͚ͯ࣌ؒͪݫ͍͠
• Hadoop, Hiveߴ৴པੑͷ֬อͱҾ͖͑ʹதؒσʔλ ͷDisk I/O͕ϘτϧωοΫʹ • αʔόͨΓͷϝϞϦ༰ྔ૿େ
HadoopޙͷϓϩμΫτ • HiveͷΦϯϝϞϦߴԽ • ϦΞϧλΠϜͷετϦʔ Ϝσʔλॲཧ • ෳͷσʔλιʔε / DB
ʹ·͕ͨͬͯͷߴूܭ • λεΫ࣮ߦΛ࠷దԽ͠ϨΠςϯγΛ࣮ݱ
Spark • ൚༻ͷࢄϓϩάϥϛϯάڥ • RDDΛجૅʹ͓͍ͨεέϧτϯฒྻϓϩάϥϛϯάڥ • ΦϯϝϞϦͷRDDΛ༻͍Δ͜ͱͰɺϨΠςϯγʔͷ ࢄܭࢉΛ࣮ݱ • ϝϞϦʹΒͳ͍ͷDiskʹอଘ
• RDDʹର͢Δૢ࡞ΛΈ߹ΘͤΔ͜ͱͰɺػցֶशε τϦʔϜσʔλॲཧΛ࣮ݱ
RDDʹର͢Δجຊԋࢉ • ScalaͷSeqॲཧͷߴ֊ؔ+α͕ࢄ࣮ߦ • map, flatMap, filter, sort, union, zip
• reduce, fold, reduceByKey, groupBy, groupByKey, count cogroup, cross • join, leftOuterJoin, rightOuterJoin • sample, take, first, partitionBy, mapWith, pipe, save • etc….
RDDͷσʔλϩʔΧϦςΟ • λεΫͷ࣮ߦॴɾॱংσʔλɾιʔεͷ ஔॴΛݩʹ࠷దͳDAGදݱͰཧ )%'4 3%% 3%% NBQ NBQ NBQ
NBQ 3%% 3FEVDF
RDDͷোੑ • RDDͷ֤ཁૉ͕ࣗͲͷΑ͏ͳܦ࿏Ͱੜ ͞Ε͔ͨه )%'4 NBQ NBQ ☓ഁଛ )%'4 NBQ
NBQ NBQ ࠶ඞཁʹͳͬͨ࣌ɺσʔλɾιʔε͔Β࠶ੜ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
PySpark + IPython Notebook • PySparkIPython্Ͱ࣮ߦՄೳ • AWSͳΒɺίϚϯυϥΠϯ1ൃͰΫϥελߏஙՄೳ • Spark
on EMR(YARNରԠ)Λಈ͔͢ • http://qiita.com/shunsukeaihara/items/1524b66579e91d1cf7cf
• ఆظόονܥfluentd -> RedshiftͰॲཧ • ΞυϗοΫͳϩάੳFluentd -> S3 -> Spark
• S3্ͷେྔͷϑΝΠϧΛखܰʹॲཧՄೳ GunosyͷSparkϢʔεέʔε "1*αʔό 4QBSLPO"84&.3 3FETIJGU$MVTUFS
GunosyͷSparkϢʔεέʔε(1) • CloudTrailsͷϩά͔ΒΘΕ͍ͯΔCredentialΛ୳ͯ͠ ௵͢ͱ͔… • େྔͷJSONϑΝΠϧΛಡΈࠐΜͰHiveQLΛ࣮ߦ EBUBTDUFYU'JMF TCVDLFU@OBNFQBUI H[
IJWFQZTQBSLTRM)JWF$POUFYU TD IUIJWFKTPO3%% EBUB IUSFHJTUFS5FNQ5BCMF USBJMMT IUDBDIF5BCMF USBJMMT IJWFTRM 4&-&$5%*45*/$5SFDPSEVTFS*EFOUJUZBDDFTT,FZ*E '30.USBJMMT-"5&3"-7*&8FYQMPEF 3FDPSET TBTSFDPSE
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • Ϣʔβຖʹclickͨ͠هࣄͷidΛListΛcsvͰS3ʹอଘ • TF-IDFͰॏΈ͚ͭ TD4QBSL$POUFYU NBMFTDUFYU'JMF
lTCVDLFUQBUINBMF@ H[l GFNBMFTDUFYU'JMF lTCVDLFUQBUINBMF@ H[l UG)BTIJOH5' OVN'FBUVSFT NBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z GFNBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z JEG*%' JEG@NPEFMJEGpU NBMFVOJPO GFNBMF NBMFJEG@NPEFMUSBOTGPSN NBMF GFNBMFJEG@NPEFMUSBOTGPSN GFNBMF
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • LabeledPointʹม͠ϩδεςΟοΫճؼͰֶश/ ྨ NBMFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y
GFNBMFGFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y USBJOJOHNBMFVOJPO GFNBMF USBJOJOHDBDIF NPEFM-PHJTUJD3FHSFTTJPO8JUI4(%USBJO USBJOJOH
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • ઌ಄͕ϢʔβID, ͦΕҎ͕߱هࣄIDͷϦετ͔Βਪఆ EFGQBSTF Y EBUB<JOU
J GPSJJOYTQMJU l z > SFUVSO-BCFMFE1PJOU EBUB<> EBUB<> VOLOPXOTDUFYU'JMF lTCVDLFUQBUIVOLOPXO@ H[l VOLOPXOVOLOPXONBQ MBNCEBYUGUSBOTGPSN YTQMJU l z VOLOPXOVOLOPXONBQ MBNCEBY Y<> JEG@NPEFMUPSBOTGPSN UGUSBOTGPSNY<> VOLOPXONBQ MBNCEBY Y<> NPEFMQSFEJDU Y<> DPMMFDU
Pyspark͓ख͚ܰͩͲ… • PythonͷؔΛPickleͯ͠ࢄ࣮ߦ͢ΔͷͰ͍Ζ͍Ζ͍ • JavaͷϥΠϒϥϦ(kuromoji)Λར༻͍ͨ͠߹Scala ͷϥούʔ + py4jͷϥούʔ͕ඞཁ • Scala͔ΒͳΒͦͷ··͑Δ
• ؤுͬͯΈ͚ͨͲ࠳ંɻpy4jͱʹ͔ͭ͘Β͍ • Spark༻్ఔͳΒScalaͷֶशίετ͍ • ͱ͍͑sbt໘͚ͩͲ…
Pythonͷࢄॲཧڥ
PythonͷࢄॲཧϥΠϒϥϦ • Ϋϥελܭࢉ༻ • PyRC, dispy, Pyro4(GensimͷLSI, LDAͷࢄԽόοΫΤϯυʹར༻) • ࢄλεΫΩϡʔ
• Celery : σίϨʔλΛ͚ͭΔ͚ͩͰؔ୯ҐͰඇಉظࢄԽ • IPython Cluster: ؆୯ͳλεΫࢄ༻ • Spartan: Numpy arrayͷZeroMQʹΑΔࢄԽ(SparkͷRDDΠϯεύΠΞ) • Disco: PythonMapReduceϑϨʔϜϫʔΫ
GunosyͷPythonࢄॲཧڥ • ػցֶशͷαʔϏε࿈ܞλεΫฒྻ(ฒྻετϦʔϜॲཧ)͕ॏ ཁͰφΠʔϒͳࢄॲཧͰ͍͍ͨͯͳ͍(ex. Jubatus) • aws্ͩͱجຊσʔλશͯS3ʹूੵ • λεΫཧͱϦτϥΠCelery(AMQP)ʹͤΔ •
ϫʔΧʔͷσϓϩΠChef + OpsworksͰશࣗಈԽ • ΦϯϥΠϯֶशͷࢄԽparameter iterative mixing • EMΞϧΰϦζϜͷࢄԽσʔλΛਫฏࢄͯ͠ಠཱʹܭࢉͨ͠ ύϥϝʔλͷฏۉΛऔΔ
• هࣄऩूϢʔβຖͷਪનΛϫʔΧʔʹόϥϚΩ GunosyͷPythonࢄॲཧڥ هࣄΫϩʔϥʔ DFMFSZXPSLFS ਪનΤϯδϯ DFMFSZXPSLFS هࣄΫϦοΫϩά ίϯτϩʔϥ EKBOHPDFMFSZ
·ͱΊ • Sparkͷ؊RDDͱ͍͏σʔλߏͱεέϧτϯฒྻϕʔ εͷ൚༻తͳฒྻϓϩάϥϛϯάڥ • Python͔Βͷखܰʹࢄॲཧͱࢄػցֶश͕͑ͯศར • ͰPython͔Βෳࡶͳ͜ͱΛ͠Α͏ͱ͢ΔͱຊʹΩπΠ ͷͰScalaͰॻ͖·͠ΐ͏ •
Ͳ͏ͯ͠Python͕ྑ͍ͳΒଞͷPythonͷࢄॲཧΤ ίγεςϜΛݕ౼͠·͠ΐ͏