Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
Search
shunsukeaihara
January 17, 2015
Technology
11
3.4k
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
shunsukeaihara
January 17, 2015
Tweet
Share
More Decks by shunsukeaihara
See All by shunsukeaihara
BONXを支える技術:発話区間検出(VAD)の話/Akerun & BONX Tech Talk
shunsukeaihara
4
7.5k
Goのnet.TCPConnの話/shibuya.go01
shunsukeaihara
3
770
Norikra in Gunosy Network Ads@Norikra meetup #2
shunsukeaihara
1
5.9k
LevelDB on S3 As A KVS
shunsukeaihara
1
2.7k
色恒常性仮説に基づく色補正ライブラリcolorcorrect / 2015-01-31-kantocv27
shunsukeaihara
3
2.3k
ゼロから始めた Gunosyアドサーバ開発運用記 / 2014-12-16-dots
shunsukeaihara
6
1.1k
Gunosy.Go#5 index/io/log
shunsukeaihara
0
150
Gunosy.go#2 package/compress
shunsukeaihara
0
95
Other Decks in Technology
See All in Technology
TSのコードをRustで書き直した話
askua
2
120
「隙間家具OSS」に至る道/Fujiwara Tech Conference 2025
fujiwara3
7
6.5k
AWS Community Builderのススメ - みんなもCommunity Builderに応募しよう! -
smt7174
0
180
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
860
PaaSの歴史と、 アプリケーションプラットフォームのこれから
jacopen
7
1.5k
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
140
Building Scalable Backend Services with Firebase
wisdommatt
0
110
dbtを中心にして組織のアジリティとガバナンスのトレードオンを考えてみた
gappy50
0
280
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
210
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
0
140
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.5k
20250116_JAWS_Osaka
takuyay0ne
2
200
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
74
9.2k
Being A Developer After 40
akosma
89
590k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Fireside Chat
paigeccino
34
3.1k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Transcript
SparkʹΑΔࢄॲཧ (ͱPythonͰͷࢄॲཧ) Gunosy Inc. Shunsuke Aihara
ࣗݾհ • ҄൧ݪढ़հ (http://argmax.jp) @shunsukeaihara • GunosyͷϚωʔδϟʔ • ࠂ৴γεςϜͷ։ൃશମͱR&DܥΛ୲ •
ઐ: ܭࢉݴޠֶ • PythonͱඇಉظࢄγεςϜΛΉ • ը૾ॲཧɾԻ৴߸ॲཧͰ͍Ζ͍ΖϥΠϒϥϦ࡞ͬͯΔ • https://bitbucket.org/aihara
Agenda • Spark֓ཁ • ࢄॲཧ(ͱSpark)ͷ • GunosyͰͷSparkͷϢʔεέʔε • PythonͰͷࢄॲཧΤίγεςϜ
Sparkʹ͍ͭͯ(1) • HadoopͷΤίγεςϜ(HDFS, MESOS, YARN)ͱ࿈ܞ͢ΔΦϯϝϞ Ϧࢄॲཧܥ • Resillient Distributed Datasetsͱ͍͏োੑΛ࣋ͬͨࢄσʔλߏ
ʹର͢Δࢄϓϩάϥϛϯάڥ • RDDʹద༻͢ΔฒྻܭࢉΛɺߴ֊ؔͷνΣΠϯͷܗͰScalaɺ PythonͰ࣮ߦ • immutableͳσʔλߏ • RDDͷཁૉΫϥελͷΦϯϝϞϦʹࢄɾϨϓϦέʔγϣϯ • ഁଛɾϩετͨ͠σʔλӬଓԽͨ͠ݩσʔλ͔Β෮ݩ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
ࢄॲཧ(ͱSpark)ͷ
େنσʔλࢄॲཧͷ؊ • ΫϥελϚωʔδϝϯτ • σʔλͷࢄஔͷࣗಈԽ • σʔλଟॏԽ/ฒྻReadʹΑΔߴԽ • σʔλϩʔΧϦςΟΛอͬͨܭࢉ •
োੑ / ࠶ૹɾ࠶ܭࢉॲཧ
HadoopʹࢸΔ·Ͱ • ෳࡶͳฒྻॲཧϝοηʔδύογϯάͰಠࣗʹ࣮͢Δͱେม • εέϧτϯฒྻϓϩάϥϛϯά(Cole, 1989) • සग़͢ΔฒྻܭࢉύλʔϯͷΈ߹ΘͤͰɺ༷ʑͳฒྻॲཧΛߏతʹߏங ͢ΔؔϓϩάϥϛϯάͷΈͱෳͷ࣮ •
σʔλฒྻεέϧτϯ(map, fold/reduce, filter, zip…) • σʔλͷҟͳΔ෦ʹɼಉ࣌ʹಉ͡ૢ࡞Λߦ͏ܭࢉύλʔϯ • λεΫฒྻεέϧτϯ(pipe, farm…) • σʔλͷετϦʔϜʹରͯ͠ɼͦΕͧΕܭࢉΛద༻ͨ͠σʔλετϦʔ ϜΛฦ͢ύλʔϯ
εέϧτϯฒྻϓϩάϥϛϯά މৼߐ ؠ࡚ӳ࠸ εέϧτϯฒྻϓϩάϥϛϯάใॲཧ 7PM /P QQ
HadoopҎલͷࢄॲཧ • MPI άϦουγΣϧΛ༻͍࣮ͯ • σʔλͷஔࣗͰϚωʔδ • ڞ༗ϝϞϦ͔ڞ༗FSʹࣗͰஔ͕લఏ • ڊେσʔλͷஔͱͯ໘
• োੑಠ࣮ࣗͰอূ • ϝϞϦʹࡌΓΒͳ͍σʔλΛѻ͏ͷ͍͠
T-shirts message@WOMPAT2001 “Life is too short for MPI.”
Hadoop͕ղܾͨ͠ͷ • Պֶܭࢉ͚Ͱͳ͘େنσʔλʹಛԽ • ڊେσʔλͷஔͱॲཧͷ࣮ߦΛࣗಈཧ • HDFSͰͷࣗಈࢄஔͱɺஔॴͰMAPॲཧ
HadoopҎ߱ͷ৽ͨͳχʔζ • Hadoop / Hiveεϧʔϓοτॏࢹͷόονܥ • σʔλαΠΤϯςΟετͷχʔζΠϯλϥΫςΟϒͳ ੳɾϦΞϧλΠϜॲཧ • ॲཧֻ͚ͯ࣌ؒͪݫ͍͠
• Hadoop, Hiveߴ৴པੑͷ֬อͱҾ͖͑ʹதؒσʔλ ͷDisk I/O͕ϘτϧωοΫʹ • αʔόͨΓͷϝϞϦ༰ྔ૿େ
HadoopޙͷϓϩμΫτ • HiveͷΦϯϝϞϦߴԽ • ϦΞϧλΠϜͷετϦʔ Ϝσʔλॲཧ • ෳͷσʔλιʔε / DB
ʹ·͕ͨͬͯͷߴूܭ • λεΫ࣮ߦΛ࠷దԽ͠ϨΠςϯγΛ࣮ݱ
Spark • ൚༻ͷࢄϓϩάϥϛϯάڥ • RDDΛجૅʹ͓͍ͨεέϧτϯฒྻϓϩάϥϛϯάڥ • ΦϯϝϞϦͷRDDΛ༻͍Δ͜ͱͰɺϨΠςϯγʔͷ ࢄܭࢉΛ࣮ݱ • ϝϞϦʹΒͳ͍ͷDiskʹอଘ
• RDDʹର͢Δૢ࡞ΛΈ߹ΘͤΔ͜ͱͰɺػցֶशε τϦʔϜσʔλॲཧΛ࣮ݱ
RDDʹର͢Δجຊԋࢉ • ScalaͷSeqॲཧͷߴ֊ؔ+α͕ࢄ࣮ߦ • map, flatMap, filter, sort, union, zip
• reduce, fold, reduceByKey, groupBy, groupByKey, count cogroup, cross • join, leftOuterJoin, rightOuterJoin • sample, take, first, partitionBy, mapWith, pipe, save • etc….
RDDͷσʔλϩʔΧϦςΟ • λεΫͷ࣮ߦॴɾॱংσʔλɾιʔεͷ ஔॴΛݩʹ࠷దͳDAGදݱͰཧ )%'4 3%% 3%% NBQ NBQ NBQ
NBQ 3%% 3FEVDF
RDDͷোੑ • RDDͷ֤ཁૉ͕ࣗͲͷΑ͏ͳܦ࿏Ͱੜ ͞Ε͔ͨه )%'4 NBQ NBQ ☓ഁଛ )%'4 NBQ
NBQ NBQ ࠶ඞཁʹͳͬͨ࣌ɺσʔλɾιʔε͔Β࠶ੜ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
PySpark + IPython Notebook • PySparkIPython্Ͱ࣮ߦՄೳ • AWSͳΒɺίϚϯυϥΠϯ1ൃͰΫϥελߏஙՄೳ • Spark
on EMR(YARNରԠ)Λಈ͔͢ • http://qiita.com/shunsukeaihara/items/1524b66579e91d1cf7cf
• ఆظόονܥfluentd -> RedshiftͰॲཧ • ΞυϗοΫͳϩάੳFluentd -> S3 -> Spark
• S3্ͷେྔͷϑΝΠϧΛखܰʹॲཧՄೳ GunosyͷSparkϢʔεέʔε "1*αʔό 4QBSLPO"84&.3 3FETIJGU$MVTUFS
GunosyͷSparkϢʔεέʔε(1) • CloudTrailsͷϩά͔ΒΘΕ͍ͯΔCredentialΛ୳ͯ͠ ௵͢ͱ͔… • େྔͷJSONϑΝΠϧΛಡΈࠐΜͰHiveQLΛ࣮ߦ EBUBTDUFYU'JMF TCVDLFU@OBNFQBUI H[
IJWFQZTQBSLTRM)JWF$POUFYU TD IUIJWFKTPO3%% EBUB IUSFHJTUFS5FNQ5BCMF USBJMMT IUDBDIF5BCMF USBJMMT IJWFTRM 4&-&$5%*45*/$5SFDPSEVTFS*EFOUJUZBDDFTT,FZ*E '30.USBJMMT-"5&3"-7*&8FYQMPEF 3FDPSET TBTSFDPSE
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • Ϣʔβຖʹclickͨ͠هࣄͷidΛListΛcsvͰS3ʹอଘ • TF-IDFͰॏΈ͚ͭ TD4QBSL$POUFYU NBMFTDUFYU'JMF
lTCVDLFUQBUINBMF@ H[l GFNBMFTDUFYU'JMF lTCVDLFUQBUINBMF@ H[l UG)BTIJOH5' OVN'FBUVSFT NBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z GFNBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z JEG*%' JEG@NPEFMJEGpU NBMFVOJPO GFNBMF NBMFJEG@NPEFMUSBOTGPSN NBMF GFNBMFJEG@NPEFMUSBOTGPSN GFNBMF
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • LabeledPointʹม͠ϩδεςΟοΫճؼͰֶश/ ྨ NBMFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y
GFNBMFGFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y USBJOJOHNBMFVOJPO GFNBMF USBJOJOHDBDIF NPEFM-PHJTUJD3FHSFTTJPO8JUI4(%USBJO USBJOJOH
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • ઌ಄͕ϢʔβID, ͦΕҎ͕߱هࣄIDͷϦετ͔Βਪఆ EFGQBSTF Y EBUB<JOU
J GPSJJOYTQMJU l z > SFUVSO-BCFMFE1PJOU EBUB<> EBUB<> VOLOPXOTDUFYU'JMF lTCVDLFUQBUIVOLOPXO@ H[l VOLOPXOVOLOPXONBQ MBNCEBYUGUSBOTGPSN YTQMJU l z VOLOPXOVOLOPXONBQ MBNCEBY Y<> JEG@NPEFMUPSBOTGPSN UGUSBOTGPSNY<> VOLOPXONBQ MBNCEBY Y<> NPEFMQSFEJDU Y<> DPMMFDU
Pyspark͓ख͚ܰͩͲ… • PythonͷؔΛPickleͯ͠ࢄ࣮ߦ͢ΔͷͰ͍Ζ͍Ζ͍ • JavaͷϥΠϒϥϦ(kuromoji)Λར༻͍ͨ͠߹Scala ͷϥούʔ + py4jͷϥούʔ͕ඞཁ • Scala͔ΒͳΒͦͷ··͑Δ
• ؤுͬͯΈ͚ͨͲ࠳ંɻpy4jͱʹ͔ͭ͘Β͍ • Spark༻్ఔͳΒScalaͷֶशίετ͍ • ͱ͍͑sbt໘͚ͩͲ…
Pythonͷࢄॲཧڥ
PythonͷࢄॲཧϥΠϒϥϦ • Ϋϥελܭࢉ༻ • PyRC, dispy, Pyro4(GensimͷLSI, LDAͷࢄԽόοΫΤϯυʹར༻) • ࢄλεΫΩϡʔ
• Celery : σίϨʔλΛ͚ͭΔ͚ͩͰؔ୯ҐͰඇಉظࢄԽ • IPython Cluster: ؆୯ͳλεΫࢄ༻ • Spartan: Numpy arrayͷZeroMQʹΑΔࢄԽ(SparkͷRDDΠϯεύΠΞ) • Disco: PythonMapReduceϑϨʔϜϫʔΫ
GunosyͷPythonࢄॲཧڥ • ػցֶशͷαʔϏε࿈ܞλεΫฒྻ(ฒྻετϦʔϜॲཧ)͕ॏ ཁͰφΠʔϒͳࢄॲཧͰ͍͍ͨͯͳ͍(ex. Jubatus) • aws্ͩͱجຊσʔλશͯS3ʹूੵ • λεΫཧͱϦτϥΠCelery(AMQP)ʹͤΔ •
ϫʔΧʔͷσϓϩΠChef + OpsworksͰશࣗಈԽ • ΦϯϥΠϯֶशͷࢄԽparameter iterative mixing • EMΞϧΰϦζϜͷࢄԽσʔλΛਫฏࢄͯ͠ಠཱʹܭࢉͨ͠ ύϥϝʔλͷฏۉΛऔΔ
• هࣄऩूϢʔβຖͷਪનΛϫʔΧʔʹόϥϚΩ GunosyͷPythonࢄॲཧڥ هࣄΫϩʔϥʔ DFMFSZXPSLFS ਪનΤϯδϯ DFMFSZXPSLFS هࣄΫϦοΫϩά ίϯτϩʔϥ EKBOHPDFMFSZ
·ͱΊ • Sparkͷ؊RDDͱ͍͏σʔλߏͱεέϧτϯฒྻϕʔ εͷ൚༻తͳฒྻϓϩάϥϛϯάڥ • Python͔Βͷखܰʹࢄॲཧͱࢄػցֶश͕͑ͯศར • ͰPython͔Βෳࡶͳ͜ͱΛ͠Α͏ͱ͢ΔͱຊʹΩπΠ ͷͰScalaͰॻ͖·͠ΐ͏ •
Ͳ͏ͯ͠Python͕ྑ͍ͳΒଞͷPythonͷࢄॲཧΤ ίγεςϜΛݕ౼͠·͠ΐ͏