Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
Search
shunsukeaihara
January 17, 2015
Technology
11
3.5k
Sparkによる分散処理 / 2015-01-16 PyData.Tokyo#3
shunsukeaihara
January 17, 2015
Tweet
Share
More Decks by shunsukeaihara
See All by shunsukeaihara
BONXを支える技術:発話区間検出(VAD)の話/Akerun & BONX Tech Talk
shunsukeaihara
4
7.7k
Goのnet.TCPConnの話/shibuya.go01
shunsukeaihara
3
820
Norikra in Gunosy Network Ads@Norikra meetup #2
shunsukeaihara
1
6k
LevelDB on S3 As A KVS
shunsukeaihara
1
2.8k
色恒常性仮説に基づく色補正ライブラリcolorcorrect / 2015-01-31-kantocv27
shunsukeaihara
3
2.4k
ゼロから始めた Gunosyアドサーバ開発運用記 / 2014-12-16-dots
shunsukeaihara
6
1.2k
Gunosy.Go#5 index/io/log
shunsukeaihara
0
160
Gunosy.go#2 package/compress
shunsukeaihara
0
110
Other Decks in Technology
See All in Technology
Jaws-ug名古屋_LT資料_20250829
azoo2024
3
230
2025年になってもまだMySQLが好き
yoku0825
8
3.6k
ヒューリスティック評価を用いたゲームQA実践事例
gree_tech
PRO
0
480
【Grafana Meetup Japan #6】Grafanaをリバプロ配下で動かすときにやること ~ Grafana Liveってなんだ ~
yoshitake945
0
220
シークレット管理だけじゃない!HashiCorp Vault でデータ暗号化をしよう / Beyond Secret Management! Let's Encrypt Data with HashiCorp Vault
nnstt1
3
190
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
2
310
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
490
研究開発と製品開発、両利きのロボティクス
youtalk
1
270
allow_retry と Arel.sql / allow_retry and Arel.sql
euglena1215
1
150
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
1
260
異業種出身エンジニアが気づいた、転向して十数年経っても変わらない自分の武器とは
macnekoayu
0
280
個人CLAUDE.md紹介と設定から学んだこと/introduce-my-claude-md
shibayu36
0
180
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
It's Worth the Effort
3n
187
28k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Designing for Performance
lara
610
69k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Unsuck your backbone
ammeep
671
58k
Transcript
SparkʹΑΔࢄॲཧ (ͱPythonͰͷࢄॲཧ) Gunosy Inc. Shunsuke Aihara
ࣗݾհ • ҄൧ݪढ़հ (http://argmax.jp) @shunsukeaihara • GunosyͷϚωʔδϟʔ • ࠂ৴γεςϜͷ։ൃશମͱR&DܥΛ୲ •
ઐ: ܭࢉݴޠֶ • PythonͱඇಉظࢄγεςϜΛΉ • ը૾ॲཧɾԻ৴߸ॲཧͰ͍Ζ͍ΖϥΠϒϥϦ࡞ͬͯΔ • https://bitbucket.org/aihara
Agenda • Spark֓ཁ • ࢄॲཧ(ͱSpark)ͷ • GunosyͰͷSparkͷϢʔεέʔε • PythonͰͷࢄॲཧΤίγεςϜ
Sparkʹ͍ͭͯ(1) • HadoopͷΤίγεςϜ(HDFS, MESOS, YARN)ͱ࿈ܞ͢ΔΦϯϝϞ Ϧࢄॲཧܥ • Resillient Distributed Datasetsͱ͍͏োੑΛ࣋ͬͨࢄσʔλߏ
ʹର͢Δࢄϓϩάϥϛϯάڥ • RDDʹద༻͢ΔฒྻܭࢉΛɺߴ֊ؔͷνΣΠϯͷܗͰScalaɺ PythonͰ࣮ߦ • immutableͳσʔλߏ • RDDͷཁૉΫϥελͷΦϯϝϞϦʹࢄɾϨϓϦέʔγϣϯ • ഁଛɾϩετͨ͠σʔλӬଓԽͨ͠ݩσʔλ͔Β෮ݩ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
ࢄॲཧ(ͱSpark)ͷ
େنσʔλࢄॲཧͷ؊ • ΫϥελϚωʔδϝϯτ • σʔλͷࢄஔͷࣗಈԽ • σʔλଟॏԽ/ฒྻReadʹΑΔߴԽ • σʔλϩʔΧϦςΟΛอͬͨܭࢉ •
োੑ / ࠶ૹɾ࠶ܭࢉॲཧ
HadoopʹࢸΔ·Ͱ • ෳࡶͳฒྻॲཧϝοηʔδύογϯάͰಠࣗʹ࣮͢Δͱେม • εέϧτϯฒྻϓϩάϥϛϯά(Cole, 1989) • සग़͢ΔฒྻܭࢉύλʔϯͷΈ߹ΘͤͰɺ༷ʑͳฒྻॲཧΛߏతʹߏங ͢ΔؔϓϩάϥϛϯάͷΈͱෳͷ࣮ •
σʔλฒྻεέϧτϯ(map, fold/reduce, filter, zip…) • σʔλͷҟͳΔ෦ʹɼಉ࣌ʹಉ͡ૢ࡞Λߦ͏ܭࢉύλʔϯ • λεΫฒྻεέϧτϯ(pipe, farm…) • σʔλͷετϦʔϜʹରͯ͠ɼͦΕͧΕܭࢉΛద༻ͨ͠σʔλετϦʔ ϜΛฦ͢ύλʔϯ
εέϧτϯฒྻϓϩάϥϛϯά މৼߐ ؠ࡚ӳ࠸ εέϧτϯฒྻϓϩάϥϛϯάใॲཧ 7PM /P QQ
HadoopҎલͷࢄॲཧ • MPI άϦουγΣϧΛ༻͍࣮ͯ • σʔλͷஔࣗͰϚωʔδ • ڞ༗ϝϞϦ͔ڞ༗FSʹࣗͰஔ͕લఏ • ڊେσʔλͷஔͱͯ໘
• োੑಠ࣮ࣗͰอূ • ϝϞϦʹࡌΓΒͳ͍σʔλΛѻ͏ͷ͍͠
T-shirts message@WOMPAT2001 “Life is too short for MPI.”
Hadoop͕ղܾͨ͠ͷ • Պֶܭࢉ͚Ͱͳ͘େنσʔλʹಛԽ • ڊେσʔλͷஔͱॲཧͷ࣮ߦΛࣗಈཧ • HDFSͰͷࣗಈࢄஔͱɺஔॴͰMAPॲཧ
HadoopҎ߱ͷ৽ͨͳχʔζ • Hadoop / Hiveεϧʔϓοτॏࢹͷόονܥ • σʔλαΠΤϯςΟετͷχʔζΠϯλϥΫςΟϒͳ ੳɾϦΞϧλΠϜॲཧ • ॲཧֻ͚ͯ࣌ؒͪݫ͍͠
• Hadoop, Hiveߴ৴པੑͷ֬อͱҾ͖͑ʹதؒσʔλ ͷDisk I/O͕ϘτϧωοΫʹ • αʔόͨΓͷϝϞϦ༰ྔ૿େ
HadoopޙͷϓϩμΫτ • HiveͷΦϯϝϞϦߴԽ • ϦΞϧλΠϜͷετϦʔ Ϝσʔλॲཧ • ෳͷσʔλιʔε / DB
ʹ·͕ͨͬͯͷߴूܭ • λεΫ࣮ߦΛ࠷దԽ͠ϨΠςϯγΛ࣮ݱ
Spark • ൚༻ͷࢄϓϩάϥϛϯάڥ • RDDΛجૅʹ͓͍ͨεέϧτϯฒྻϓϩάϥϛϯάڥ • ΦϯϝϞϦͷRDDΛ༻͍Δ͜ͱͰɺϨΠςϯγʔͷ ࢄܭࢉΛ࣮ݱ • ϝϞϦʹΒͳ͍ͷDiskʹอଘ
• RDDʹର͢Δૢ࡞ΛΈ߹ΘͤΔ͜ͱͰɺػցֶशε τϦʔϜσʔλॲཧΛ࣮ݱ
RDDʹର͢Δجຊԋࢉ • ScalaͷSeqॲཧͷߴ֊ؔ+α͕ࢄ࣮ߦ • map, flatMap, filter, sort, union, zip
• reduce, fold, reduceByKey, groupBy, groupByKey, count cogroup, cross • join, leftOuterJoin, rightOuterJoin • sample, take, first, partitionBy, mapWith, pipe, save • etc….
RDDͷσʔλϩʔΧϦςΟ • λεΫͷ࣮ߦॴɾॱংσʔλɾιʔεͷ ஔॴΛݩʹ࠷దͳDAGදݱͰཧ )%'4 3%% 3%% NBQ NBQ NBQ
NBQ 3%% 3FEVDF
RDDͷোੑ • RDDͷ֤ཁૉ͕ࣗͲͷΑ͏ͳܦ࿏Ͱੜ ͞Ε͔ͨه )%'4 NBQ NBQ ☓ഁଛ )%'4 NBQ
NBQ NBQ ࠶ඞཁʹͳͬͨ࣌ɺσʔλɾιʔε͔Β࠶ੜ
Sparkʹ͍ͭͯ(2) • RDDʹର͢Δࢄॲཧج൫ͷ্ʹҎԼΛ࣮ • σʔλετϦʔϜॲཧ(Spark Streaming) • ࢄSQL(SparkSQL) • ࢄػցֶशϥΠϒϥϦ(Mllib)
• ࢄάϥϑॲཧϥΠϒϥϦ(GraphX)
PySpark + IPython Notebook • PySparkIPython্Ͱ࣮ߦՄೳ • AWSͳΒɺίϚϯυϥΠϯ1ൃͰΫϥελߏஙՄೳ • Spark
on EMR(YARNରԠ)Λಈ͔͢ • http://qiita.com/shunsukeaihara/items/1524b66579e91d1cf7cf
• ఆظόονܥfluentd -> RedshiftͰॲཧ • ΞυϗοΫͳϩάੳFluentd -> S3 -> Spark
• S3্ͷେྔͷϑΝΠϧΛखܰʹॲཧՄೳ GunosyͷSparkϢʔεέʔε "1*αʔό 4QBSLPO"84&.3 3FETIJGU$MVTUFS
GunosyͷSparkϢʔεέʔε(1) • CloudTrailsͷϩά͔ΒΘΕ͍ͯΔCredentialΛ୳ͯ͠ ௵͢ͱ͔… • େྔͷJSONϑΝΠϧΛಡΈࠐΜͰHiveQLΛ࣮ߦ EBUBTDUFYU'JMF TCVDLFU@OBNFQBUI H[
IJWFQZTQBSLTRM)JWF$POUFYU TD IUIJWFKTPO3%% EBUB IUSFHJTUFS5FNQ5BCMF USBJMMT IUDBDIF5BCMF USBJMMT IJWFTRM 4&-&$5%*45*/$5SFDPSEVTFS*EFOUJUZBDDFTT,FZ*E '30.USBJMMT-"5&3"-7*&8FYQMPEF 3FDPSET TBTSFDPSE
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • Ϣʔβຖʹclickͨ͠هࣄͷidΛListΛcsvͰS3ʹอଘ • TF-IDFͰॏΈ͚ͭ TD4QBSL$POUFYU NBMFTDUFYU'JMF
lTCVDLFUQBUINBMF@ H[l GFNBMFTDUFYU'JMF lTCVDLFUQBUINBMF@ H[l UG)BTIJOH5' OVN'FBUVSFT NBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z GFNBMFNBMFNBQ MBNCEBYUGUSBOTGPSN YTQMJU l z JEG*%' JEG@NPEFMJEGpU NBMFVOJPO GFNBMF NBMFJEG@NPEFMUSBOTGPSN NBMF GFNBMFJEG@NPEFMUSBOTGPSN GFNBMF
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • LabeledPointʹม͠ϩδεςΟοΫճؼͰֶश/ ྨ NBMFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y
GFNBMFGFNBMFNBQ MBNCEBY-BCFMFE1PJOU Y USBJOJOHNBMFVOJPO GFNBMF USBJOJOHDBDIF NPEFM-PHJTUJD3FHSFTTJPO8JUI4(%USBJO USBJOJOH
GunosyͷSparkϢʔεέʔε(2) • Ϣʔβͷهࣄϩά͔Βͷੑผྨ • ઌ಄͕ϢʔβID, ͦΕҎ͕߱هࣄIDͷϦετ͔Βਪఆ EFGQBSTF Y EBUB<JOU
J GPSJJOYTQMJU l z > SFUVSO-BCFMFE1PJOU EBUB<> EBUB<> VOLOPXOTDUFYU'JMF lTCVDLFUQBUIVOLOPXO@ H[l VOLOPXOVOLOPXONBQ MBNCEBYUGUSBOTGPSN YTQMJU l z VOLOPXOVOLOPXONBQ MBNCEBY Y<> JEG@NPEFMUPSBOTGPSN UGUSBOTGPSNY<> VOLOPXONBQ MBNCEBY Y<> NPEFMQSFEJDU Y<> DPMMFDU
Pyspark͓ख͚ܰͩͲ… • PythonͷؔΛPickleͯ͠ࢄ࣮ߦ͢ΔͷͰ͍Ζ͍Ζ͍ • JavaͷϥΠϒϥϦ(kuromoji)Λར༻͍ͨ͠߹Scala ͷϥούʔ + py4jͷϥούʔ͕ඞཁ • Scala͔ΒͳΒͦͷ··͑Δ
• ؤுͬͯΈ͚ͨͲ࠳ંɻpy4jͱʹ͔ͭ͘Β͍ • Spark༻్ఔͳΒScalaͷֶशίετ͍ • ͱ͍͑sbt໘͚ͩͲ…
Pythonͷࢄॲཧڥ
PythonͷࢄॲཧϥΠϒϥϦ • Ϋϥελܭࢉ༻ • PyRC, dispy, Pyro4(GensimͷLSI, LDAͷࢄԽόοΫΤϯυʹར༻) • ࢄλεΫΩϡʔ
• Celery : σίϨʔλΛ͚ͭΔ͚ͩͰؔ୯ҐͰඇಉظࢄԽ • IPython Cluster: ؆୯ͳλεΫࢄ༻ • Spartan: Numpy arrayͷZeroMQʹΑΔࢄԽ(SparkͷRDDΠϯεύΠΞ) • Disco: PythonMapReduceϑϨʔϜϫʔΫ
GunosyͷPythonࢄॲཧڥ • ػցֶशͷαʔϏε࿈ܞλεΫฒྻ(ฒྻετϦʔϜॲཧ)͕ॏ ཁͰφΠʔϒͳࢄॲཧͰ͍͍ͨͯͳ͍(ex. Jubatus) • aws্ͩͱجຊσʔλશͯS3ʹूੵ • λεΫཧͱϦτϥΠCelery(AMQP)ʹͤΔ •
ϫʔΧʔͷσϓϩΠChef + OpsworksͰશࣗಈԽ • ΦϯϥΠϯֶशͷࢄԽparameter iterative mixing • EMΞϧΰϦζϜͷࢄԽσʔλΛਫฏࢄͯ͠ಠཱʹܭࢉͨ͠ ύϥϝʔλͷฏۉΛऔΔ
• هࣄऩूϢʔβຖͷਪનΛϫʔΧʔʹόϥϚΩ GunosyͷPythonࢄॲཧڥ هࣄΫϩʔϥʔ DFMFSZXPSLFS ਪનΤϯδϯ DFMFSZXPSLFS هࣄΫϦοΫϩά ίϯτϩʔϥ EKBOHPDFMFSZ
·ͱΊ • Sparkͷ؊RDDͱ͍͏σʔλߏͱεέϧτϯฒྻϕʔ εͷ൚༻తͳฒྻϓϩάϥϛϯάڥ • Python͔Βͷखܰʹࢄॲཧͱࢄػցֶश͕͑ͯศར • ͰPython͔Βෳࡶͳ͜ͱΛ͠Α͏ͱ͢ΔͱຊʹΩπΠ ͷͰScalaͰॻ͖·͠ΐ͏ •
Ͳ͏ͯ͠Python͕ྑ͍ͳΒଞͷPythonͷࢄॲཧΤ ίγεςϜΛݕ౼͠·͠ΐ͏