T! , 𝑇# , … , 𝑇' に変更 ・ラプラシアンを調整 →チェビシェフ多項式は直交基底であり(c.f.単項式基底1, 𝑥 … , 𝑥#は直交×) パラメータθの数値が安定する.(詳細は教科書P.186) 26 <latexit sha1_base64="+qCWgs5E7bBkjxPAF2yFeALNsVw=">AAACm3ichVHLShxBFD22iU7GqKPZBILQZDAIwnBbZBRBkLgJwYWPjAqONt091VpMv+iuGTDN/EB+IIu4MRBCyF+YTSDZZuEniEsFNy5yp6dDSES9TVedOveeW6eq7MiTiSI67dP6HzwcGCw8Kg49Hh4ZLY2NbyZhK3ZEzQm9MN62rUR4MhA1JZUntqNYWL7tiS27udzNb7VFnMgweKMOI7HrW/uBdKVjKabMUtU1U1d6SsSi0VnU6+pAKMsk3dWn9XrS8s1ULhqdveafjNRX9qTumqUyVSgL/SYwclBGHqth6TPqaCCEgxZ8CARQjD1YSPjbgQFCxNwuUuZiRjLLC3RQZG2LqwRXWMw2edzn1U7OBrzu9kwytcO7ePzHrNQxSb/oC13Qd/pKZ3R9a68069H1csiz3dOKyBx993Tj6l6Vz7PCwV/VnZ4VXMxnXiV7jzKmewqnp2+/fX+xsbA+mb6gj3TO/o/plL7xCYL2pfNpTax/QJEfwPj/um+CzZmKUa3Mrs2Wl17mT1HAMzzHFN/3HJbwCquo8b5HOMEP/NQmtGXttbbSK9X6cs0T/BNa7Tdt453j</latexit> ffiltered = ✓0f + k X i=1 ✓iLif [1] Defferrard, M. et al. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In NeurIPS <latexit sha1_base64="KyKI8ogScCbh4A/fxmnEB2sLJgg=">AAACb3ichVHLSsNAFD2N7/qqulAQJFgU3ZQbERVBKLpx2YdVQaUkcdRgmoQkLdbiD/gBunDhA0TEz3DjD7jwE8SVKLhx4U0aEBX1DjNz5sw9d87MaI5peD7RQ0xqaGxqbmlti7d3dHZ1J3p6lz277OqioNum7a5qqidMwxIF3/BNseq4Qi1ppljRdheC/ZWKcD3Dtpb8qiM2Suq2ZWwZuuoztb5UpLG9cXlOVuR4MZGkFIUh/wRKBJKIImMnrrCOTdjQUUYJAhZ8xiZUeNzWoIDgMLeBGnMuIyPcFzhAnLVlzhKcoTK7y+M2r9Yi1uJ1UNML1TqfYnJ3WSljhO7pml7ojm7okd5/rVULawReqjxrda1wit2HA/m3f1Ulnn3sfKr+9OxjCzOhV4O9OyET3EKv6yv7xy/52dxIbZQu6In9n9MD3fINrMqrfpkVuRMEH6B8f+6fYHkipUylJrOTyfR89BWtGMQwxvi9p5HGIjIo8LkOjnCKs9iz1C8NSXI9VYpFmj58CWn8A74YjHs=</latexit> T0(x) = 1 <latexit sha1_base64="7mR0NhkCPQ9UHyyJU/irfev2OXY=">AAACbnichVHLSsNAFD2Nr1ofrQoiiBgslbopEykqgiC6canVVqFKSeK0hqZJSNJSLf6Ae3EhKAoi4me48Qdc9BPEjVDBjQtv04BoUW+YzJkz99w5c0exdM1xGasHhI7Oru6eYG+or39gMBwZGs44ZtlWeVo1ddPeUWSH65rB067m6nzHsrlcUnS+rRRXm/vbFW47mmlsuYcW3yvJBUPLa6rsEpXdyknx6oy4JFbFXCTKEswLsR1IPojCj3Uzcotd7MOEijJK4DDgEtYhw6EvCwkMFnF7qBFnE9K8fY5jhEhbpixOGTKxRfoXaJX1WYPWzZqOp1bpFJ2GTUoRMfbE7liDPbJ79sw+fq1V82o0vRzSrLS03MqFT8Y23/9VlWh2cfCl+tOzizwWPK8aebc8pnkLtaWvHJ01NhdTsdo0u2Yv5P+K1dkD3cCovKk3Gzx1jhA9gPSz3e0gM5uQ5hLJjWR0ecV/iiDGMYU49Xsey1jDOtJex05xgcvAqzAqTAiTrVQh4GtG8C2E+CcSiIyv</latexit> T1(x) = x <latexit sha1_base64="5xwGNd4gYVBjRscW+zDvwAziU2A=">AAACh3ichVHLSsNAFD2N7/po1Y3gJlgURayTUlQEwcfGZdVWBZWQxFGHpklI0qIW9+IPuHClICKCW9278Qdc+AniUsGNC2/SgKiod5iZM2fuuXNmRndM4fmMPcakuvqGxqbmlnhrW3tHItnZtezZZdfgBcM2bXdV1zxuCosXfOGbfNVxuVbSTb6iF+eC/ZUKdz1hW3l/z+EbJW3bElvC0Hyi1GRfXq2KYeVgcHdInpIzu3lVBHBEDviRkFeTKZZmYcg/gRKBFKLI2ckLrGMTNgyUUQKHBZ+wCQ0etTUoYHCI20CVOJeQCPc5DhAnbZmyOGVoxBZp3KbVWsRatA5qeqHaoFNM6i4pZfSzB3bJXtg9u2JP7P3XWtWwRuBlj2a9puWOmjjqWXr7V1Wi2cfOp+pPzz62MBF6FeTdCZngFkZNX9k/flmaXOyvDrAz9kz+T9kju6MbWJVX43yBL54gTh+gfH/un2A5k1bG0tmFbGp6NvqKZvSiD4P03uOYxjxyKNC5h7jGDW6lFmlUGpMmaqlSLNJ040tIMx/C9JPy</latexit> Ti+1(x) = 2xTi(x) Ti 1(x) , <latexit sha1_base64="a7oXT5nSpywL25xsiwytlOu2BHI=">AAACpnichVHLahRBFD1pX3F8ZNSN4KZxiIwIw20JKkIg6saFSF6TCWRi291zOymm+kF3zUBs5gf8gSyyUpAgfoYbNy5V8gniMoIbF97paREN6m266tS599w6VeWnWuWG6GDKOnb8xMlT06drZ86eOz9Tv3BxLU8GWcDtINFJtu57OWsVc9soo3k9zdiLfM0dv/9gnO8MOctVEq+anZQ3I28rVqEKPCOUW78XukWotOGMeyN73u6abTaeS3Zo37C7+SByCzXvjJ70f2aUveqqZtco3ePi0eh66NYb1KIy7KPAqUADVSwm9X100UOCAANEYMQwgjU85PJtwAEhFW4ThXCZIFXmGSPURDuQKpYKT9i+jFuy2qjYWNbjnnmpDmQXLX8mShuz9IFe0yG9ozf0mb7/tVdR9hh72ZHZn2g5dWeeX1759l9VJLPB9i/VPz0bhLhTelXiPS2Z8SmCiX74bPdw5e7ybHGNXtIX8f+CDuitnCAefg1eLfHyHmryAM6f130UrN1sObdac0tzjYX71VNM4wquoin3fRsLeIhFtGXffbzHR3yymtZjq211JqXWVKW5hN/CevoDBWaiXQ==</latexit> ffiltered = ✓0f + k X i=1 ✓iTi(˜ L)f <latexit sha1_base64="BoOFWQ0jxYoPZ6Jk78xVcMntTNo=">AAACiXichVHLLgRBFD3ae7wGG4lNxyA2JtUiiEQibEgsvAaJkUl3Tw0VNd2d7ppJ6MwP+AELKxIRsbFla+MHLHyCWJLYWLjT04kguJWqOnXqnlunqixPikAx9lin1Tc0NjW3tCba2js6u5LdPRuBW/JtnrFd6fpblhlwKRyeUUJJvuX53Cxakm9a+/PV/c0y9wPhOuvqwOM7RXPXEQVhm4qoXHIwq4TM83Cpos/o2YJv2uFYJcxKqpA3c05lSR/VF3PJFEuzKPSfwIhBCnEsu8kLZJGHCxslFMHhQBGWMBFQ24YBBo+4HYTE+YREtM9RQYK0JcrilGESu0/jLq22Y9ahdbVmEKltOkVS90mpY4g9sEv2wu7ZFXti77/WCqMaVS8HNFs1LfdyXUd9a2//qoo0K+x9qv70rFDAVORVkHcvYqq3sGv68uHxy9r06lA4zM7YM/k/ZY/sjm7glF/t8xW+eoIEfYDx/bl/go2xtDGRHl8ZT83OxV/Rgn4MYITeexKzWMAyMnTuEa5xg1utTTO0KW26lqrVxZpefAlt/gMi+Zbu</latexit> ˜ L = 2 n L I ラプラシアンの固有値が[-1,1] に収まるように正規化 再起的に計算可能 ,