Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
会社の公開ページとKnowledge Base for Amazon Bedrockを使っ...
Search
そのだ
February 19, 2024
Technology
0
380
会社の公開ページとKnowledge Base for Amazon Bedrockを使ってRAG作ってみた
【Doorkeeper】
JAWS-UG沖縄 生成AI特集! 2024年02月
https://jaws-ug-okinawa.doorkeeper.jp/events/167464
そのだ
February 19, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
430
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
28
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
490
AIエージェントに脈アリかどうかを分析させてみた
sonoda_mj
2
200
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
390
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
79
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
410
AWSでRAGを作る方法
sonoda_mj
1
470
緑一色アーキテクチャ
sonoda_mj
2
240
Other Decks in Technology
See All in Technology
チームビルディング「脅威モデリング」ワークショップ
koheiyoshikawa
0
130
OPENLOGI Company Profile
hr01
0
61k
Amazon GuardDuty Malware Protection for Amazon S3を使おう
ryder472
2
100
ウェブアクセシビリティとは
lycorptech_jp
PRO
0
260
Explainable Software Engineering in the Public Sector
avandeursen
0
360
20250328_OpenAI製DeepResearchは既に一種のAGIだと思う話
doradora09
PRO
0
150
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
120
caching_sha2_passwordのはなし
boro1234
0
210
移行できそうでやりきれなかった 10年超えのシステムを葬るための戦略
ryu955
2
200
OCI見積もり入門セミナー
oracle4engineer
PRO
0
110
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
スケールアップ企業のQA組織のバリューを最大限に引き出すための取り組み
tarappo
4
910
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Documentation Writing (for coders)
carmenintech
69
4.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
177
52k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Code Review Best Practice
trishagee
67
18k
We Have a Design System, Now What?
morganepeng
51
7.5k
Transcript
会社の公開ページとKnowledge Base for Amazon BerdrockでRAG作ってみた JAWS-UG沖縄 ⽣成AI特集︕2024年2⽉ 2024.2.17 苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - 新卒3年⽬ - 最近MLを勉強し出した - Skill - AWS/React(Native)/Ruby on Rails 2
アジェンダ 3 l 背景 l Knowledge Base for Amazon Bedrockとは
l 会社の公開ページとBedrockでRAG作ってみた l まとめ
01 背景
新しい情報やプライベートの情報に関する 内容について回答してくれる、ChatGPTの ようなアプリを個人開発で作りたい!
でもいいネタが思いつかん!!
参考:https://fusic.co.jp/members
ちょうどええデータ あるやん
これ使ってみよか〜
作ったもの
苑田(webにない情報) って誰ですか? Webアプリ
苑田っていうのはな。。。 Webアプリ
02 Knowledge Base for Amazon Bedrockとは
Knowledge Base for Amazon Bedrockとは 14 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 15 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 16 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 17 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
03 会社の公開ページとBedrockで RAG作ってみた
データソース 19 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
構成図 20
構成図 21
None
質問内容 会話履歴を保持するための セッションID
sessionIDを指定しない場合 sessionIDを指定する場合 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 詳細とは何でしょうか? 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 彼はAWSだけではなく、Rubyも書ける
ようです。緑のタイツを着ています。 会話情報が保持される
構成図 25
None
構成図 27 毎日データをベクトル化してPineconeに保存している
データを前処理する 28 名前:苑田朝彰 コメント:ほげほげ 略歴:ほげほげ 担当・スキル:ほげほげ プライベート:ほげほげ 必要なところだけ取ったtxtファイル データの抽出
構成図 29 ベクターDB Freeプラン使用
デモ
04 まとめ
まとめ Bedrockを使ってChatGPTのようなアプリを簡単に作ることができた Point 2 sessionIDを使⽤することで、会話履歴が保持された 32 Point 1 Point 3
データの精度を上げるには前処理が重要(かもしれない)
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/
Appendix
検索拡張⽣成(RAG)とは 35 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 36 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 37 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 38 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 39 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 40 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 41 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな