Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIエージェントに脈アリかどうかを分析させてみた
Search
そのだ
December 26, 2024
Technology
2
220
AIエージェントに脈アリかどうかを分析させてみた
【connpass】
にんにんLT
https://connpass.com/event/335957/
そのだ
December 26, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
580
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
35
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
610
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
420
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
93
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
420
AWSでRAGを作る方法
sonoda_mj
1
500
緑一色アーキテクチャ
sonoda_mj
2
260
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
880
Other Decks in Technology
See All in Technology
AWSの新機能検証をやる時こそ、Amazon Qでプロンプトエンジニアリングを駆使しよう
duelist2020jp
1
330
エンジニアリングで組織のアウトカムを最速で最大化する!
ham0215
1
280
Computer Use〜OpenAIとAnthropicの比較と将来の展望〜
pharma_x_tech
6
960
Pythonデータ分析実践試験 出題傾向や学習のポイントとテクニカルハイライト
terapyon
1
110
AIによるコードレビューで開発体験を向上させよう!
moongift
PRO
0
350
OPENLOGI Company Profile
hr01
0
63k
今日からはじめるプラットフォームエンジニアリング
jacopen
8
1.9k
更新系と状態
uhyo
8
2.2k
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
1.1k
MCPを理解する
yudai00
12
9.1k
Dataverseの検索列について
miyakemito
1
170
2025-04-14 Data & Analytics 井戸端会議 Multi tenant log platform with Iceberg
kamijin_fanta
0
180
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
550
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Code Review Best Practice
trishagee
67
18k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Producing Creativity
orderedlist
PRO
344
40k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.5k
Building an army of robots
kneath
305
45k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fireside Chat
paigeccino
37
3.4k
4 Signs Your Business is Dying
shpigford
183
22k
Transcript
©Fusic Co., Ltd. 1 CONFIDENTIAL AIエージェントに脈アリかどうかを 分析させてみた 2024.12.26 苑田 朝彰
@sonoda_mj にんにんLT
©Fusic Co., Ltd. 2 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近スパルタンになりました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 3 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近スパルタンになりました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 4 CONTENTS 目次 1. 背景 2. AIエージェントに脈アリかどうかを分析させてみた
3. まとめ
©Fusic Co., Ltd. 5 背景 1
©Fusic Co., Ltd. 6 みなさん
©Fusic Co., Ltd. 7 その恋愛が脈アリか
©Fusic Co., Ltd. 8 知りたくないですか?
©Fusic Co., Ltd. 9 連絡をとっている人が 脈アリかどうかわかればなぁ
©Fusic Co., Ltd. 10 相手が何を考えてるか わからないよ・・・
©Fusic Co., Ltd. 11 エンジニアなら
©Fusic Co., Ltd. 12 面倒なことは
©Fusic Co., Ltd. 13 自動化する!!
©Fusic Co., Ltd. 14 どうやって 自動化しよう・・・
©Fusic Co., Ltd. 15 様々なアプリケーション
©Fusic Co., Ltd. 16 メッセージをAIに 分析してもらおう!
©Fusic Co., Ltd. 17 イメージはこんな感じ
©Fusic Co., Ltd. 18 AIエージェント ユーザー 「hogehoge」って来たんだけど 脈あると思います???
©Fusic Co., Ltd. 19 AIエージェント ユーザー ギリ脈アリかもね
©Fusic Co., Ltd. 20 AIエージェント ユーザー 告白しよう!
©Fusic Co., Ltd. 21 AIに脈アリか分析させてみた 2
©Fusic Co., Ltd. 22 今回の課題 • テキストでのやりとりで脈アリかどうかがわからない • 誰に相談したらいいかわからない
©Fusic Co., Ltd. 23 構成図 Amazon Bedrock Agents Amazon Bedrock
Knowledge Bases Amazon OpenSearch Service Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless S3 S3 ウェブサイト Multi-Agent Collaboration ユーザー 恋愛サイトに詳しいAIエージェント 脈アリに特化したAIエージェント Claudeが考えた脳筋AIエージェント
©Fusic Co., Ltd. 24 AI21 Labs、Anthropic、Cohere、Meta、Stability AI、Amazon などの大手 AI 企業が提供する高性能な基盤モ
デル (FM) を単一の API で選択できるフルマネージド型サービス Amazon Bedrock 引用: https://aws.amazon.com/jp/bedrock/
©Fusic Co., Ltd. 25 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行
©Fusic Co., Ltd. 26 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行 旅館の部屋を予約したい
©Fusic Co., Ltd. 27 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行 1. 何が必要か考える 2. DBから空いてる部屋を検索 3. 料金込みで提案する
©Fusic Co., Ltd. 28 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless
©Fusic Co., Ltd. 29 ユーザー (緑アイコン) アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock
Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html Pinecone Serverless
©Fusic Co., Ltd. 30 ユーザー (緑アイコン) アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock
Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html Pinecone Serverless 自分の資料を読み込んで賢くなるAI 読み込ませたい資料
©Fusic Co., Ltd. 31 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless
©Fusic Co., Ltd. 32 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless Lambdaを実行できる
©Fusic Co., Ltd. 33 複数のAIエージェントが協力して一つのタスクを遂行する。各エージェントはそれぞれ特定の役割を持ち、独立して動作 します。 マルチエージェントシステム 引用:https://note.com/fujitsu_pr/n/n2b1b3ebfc78a ユーザー レストラン予約
エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント
©Fusic Co., Ltd. 34 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達
©Fusic Co., Ltd. 35 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 いい感じに旅行プラン 作ってください
©Fusic Co., Ltd. 36 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 適切なコラボレーターに 質問をルーティングする
©Fusic Co., Ltd. 37 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 京都とかどうや? 新幹線で行くんやで 京都駅近くに ええホテルあるで
©Fusic Co., Ltd. 38 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 福岡からやと新幹線で 京都行くとええで! ホテルは京都駅な!
©Fusic Co., Ltd. 39 構成図(再掲) Amazon Bedrock Agents Amazon Bedrock
Knowledge Bases Amazon OpenSearch Service Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless S3 S3 ウェブサイト Multi-Agent Collaboration ユーザー 恋愛サイトに詳しいAIエージェント 脈アリに特化したAIエージェント Claudeが考えた脳筋AIエージェント
©Fusic Co., Ltd. 40 デモ
©Fusic Co., Ltd. 41 参考本 AIエージェントについて学べる Bedrockについて学べる
©Fusic Co., Ltd. 42 参考サイト(ハンズオン) 引用:https://github.com/aws-samples/bedrock-multi-agents-collaboration-workshop?tab=readme-ov-file
©Fusic Co., Ltd. 43 まとめ 3
©Fusic Co., Ltd. 44 まとめ AIエージェントを使用することで、脈アリかどうかを判断することができた Point 01 Amazon Bedrock
Agentsを使用することで、簡単にAIエージェントを構築できた Point 02 Amazon Bedrock Multi-Agent Collaborationを使用することで、簡単にマルチエージェントを構築できた Point 03
©Fusic Co., Ltd. 45 Thank You We are Hiring! https://recruit.fusic.co.jp/
ご清聴ありがとうございました!