Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Knowledge basesにLangfuse導入してみた
Search
そのだ
March 10, 2025
Technology
2
660
Amazon Bedrock Knowledge basesにLangfuse導入してみた
【connpass】
Bedrock Night オンライン 〜AWSで生成AIアプリ開発! 最新ナレッジ共有〜
https://jawsug.connpass.com/event/345497/
そのだ
March 10, 2025
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
650
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
41
AIエージェントに脈アリかどうかを分析させてみた
sonoda_mj
2
220
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
430
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
100
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
420
AWSでRAGを作る方法
sonoda_mj
1
520
緑一色アーキテクチャ
sonoda_mj
2
260
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
890
Other Decks in Technology
See All in Technology
初めてのGoogle Cloud by AWS出身者
harukasakihara
1
710
グループ ポリシー再確認 ③
murachiakira
0
140
CSS polyfill とその未来
ken7253
0
110
toittaにOpenTelemetryを導入した話 / Mackerel APM リリースパーティ
cohalz
1
170
Things you never dared to ask about LLMs — v2
glaforge
1
400
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
1
7.1k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
37k
ゼロコードで実現! - OpenTelemetryとOCI APM Agentによる簡単アプリケーション監視 - / Zero-Code Observability with OpenTelemetry and OCI APM
oracle4engineer
PRO
1
170
大規模PaaSにおける監視基盤の構築と効率化の道のり
lycorptech_jp
PRO
0
130
Contract One Dev Group 紹介資料
sansan33
PRO
0
5.8k
エッジ活用の最適解とは? 新しいエッジ処理アーキテクチャ「Edge-as-a-Service」構想について
kakerucom
0
110
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
8
65k
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Producing Creativity
orderedlist
PRO
345
40k
Balancing Empowerment & Direction
lara
0
70
GitHub's CSS Performance
jonrohan
1031
460k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Transcript
©Fusic Co., Ltd. 1 CONFIDENTIAL Amazon Bedrock Knowledge basesに Langfuse導入してみた
2025.3.10 苑田 朝彰 @sonoda_mj Bedrock Night オンライン
©Fusic Co., Ltd. 2 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近後輩が捌いたぶりを食べました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 3 CONTENTS 目次 1. 背景 2. Amazon
Bedrock Knowledge Bases(KB)にLangfuseを導入して みた 3. まとめ
©Fusic Co., Ltd. 4 背景 1
©Fusic Co., Ltd. 5 KBで監視を行うには、CloudWatch Logsやメトリクスを見にいく必要があり、少々めんどくさい。 KBの監視が少々めんどくさい CloudWatch Logs CloudWatch
メトリクス
©Fusic Co., Ltd. 6 KBで監視を行うには、CloudWatch Logsやメトリクスを見にいく必要があり、少々めんどくさい。 KBの監視が少々めんどくさい CloudWatch Logs CloudWatch
メトリクス Langfuseを使って、一括で管理したい!
©Fusic Co., Ltd. 7 KBにLangfuseを導入してみた 2
©Fusic Co., Ltd. 8 LLMアプリケーションのために設計されたオープンソースの観測・分析プラットフォーム。 トレースやメトリクスを取得し、可視化できる。 Langfuseとは 引用:https://langfuse.com/jp トレース メトリクス
©Fusic Co., Ltd. 9 @observeで対象の関数をデコレートする。 Langfuseを導入する方法 引用:https://langfuse.com/docs/sdk/python/decorators
©Fusic Co., Ltd. 10 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 11 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 12 retrieve_and_generate APIにLangfuseを導入する
©Fusic Co., Ltd. 13 retrieve_and_generate APIにLangfuseを導入する retrieve_and_generate API Langfuseの細かい調整
©Fusic Co., Ltd. 14 retrieve_and_generate APIにLangfuseを導入した結果
©Fusic Co., Ltd. 15 retrieve_and_generate APIにLangfuseを導入した結果 一連の処理 選択した処理の 入出力
©Fusic Co., Ltd. 16 retrieve_and_generate APIのOutputだけだと、Langfuseに表示できる項目が少ないため、メリットを受けにくい。 Langfuseのメリットを受けにくい 1. Token情報の不足 2.
RetrieveとGenerateの処理時間が一緒のため、どこに時間がかかってるかわからない
©Fusic Co., Ltd. 17 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 18 retrieve APIにLangfuseを導入する
©Fusic Co., Ltd. 19 retrieve APIにLangfuseを導入する Langfuseの細かい調整 KBからの検索 会話履歴の取得 プロンプトの生成
テキスト生成
©Fusic Co., Ltd. 20 retrieve APIにLangfuseを導入する Langfuseの細かい調整 KBからの検索 会話履歴の取得 プロンプトの生成
テキスト生成 @observe @observe @observe @observe
©Fusic Co., Ltd. 21 retrieve APIにLangfuseを導入した結果
©Fusic Co., Ltd. 22 retrieve APIにLangfuseを導入した結果 一連の処理 選択した処理の 入出力
©Fusic Co., Ltd. 23 retrieve APIにLangfuseを導入した結果 Converse APIを使用することで、KBでは取得 できなかったパラメータを表記
©Fusic Co., Ltd. 24 各処理時間がどの程度かかったのかが瞬時にわかる。 retrieve APIにLangfuseを導入した結果
©Fusic Co., Ltd. 25 各APIへのLangfuse導入難易度の比較 APIの種類 導入の容易さ 監視機能の充実度 retrieve_and_generate API
• 導入が簡単 • 実装が非常にシンプル • 取得できない情報がある • 処理の内訳に対する分析がで きない。 • 詳細な監視が困難 retrieve API • 実装がやや複雑 • 複数の処理をデコレートする必 要がある • 詳細な情報が取得可能 • 各処理にかかった時間を確認 可能
©Fusic Co., Ltd. 26 まとめ 3
©Fusic Co., Ltd. 27 まとめ KBでも簡単にLangfuseを導入することが出来た。 Point 01 retrieve_and_generate APIとretrieve
APIは一長一短あるので、各プロジェクトごとに調整する必要がある。 Point 02 KB画面から確認できるようになってほしい。 Point 03
©Fusic Co., Ltd. 28 Thank You We are Hiring! https://recruit.fusic.co.jp/
ご清聴ありがとうございました!