Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Knowledge basesにLangfuse導入してみた
Search
そのだ
March 10, 2025
Technology
2
580
Amazon Bedrock Knowledge basesにLangfuse導入してみた
【connpass】
Bedrock Night オンライン 〜AWSで生成AIアプリ開発! 最新ナレッジ共有〜
https://jawsug.connpass.com/event/345497/
そのだ
March 10, 2025
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
540
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
34
AIエージェントに脈アリかどうかを分析させてみた
sonoda_mj
2
220
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
420
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
89
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
420
AWSでRAGを作る方法
sonoda_mj
1
490
緑一色アーキテクチャ
sonoda_mj
2
250
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
870
Other Decks in Technology
See All in Technology
バックオフィス向け toB SaaS バクラクにおけるレコメンド技術活用 / recommender-systems-in-layerx-bakuraku
yuya4
5
590
ここはMCPの夜明けまえ
nwiizo
32
12k
AWSの新機能検証をやる時こそ、Amazon Qでプロンプトエンジニアリングを駆使しよう
duelist2020jp
1
280
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
800
Databricksで完全履修!オールインワンレイクハウスは実在した!
akuwano
0
110
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
480
Dynamic Reteaming And Self Organization
miholovesq
3
660
AIにおけるソフトウェアテスト_ver1.00
fumisuke
1
250
SmartHR プロダクトエンジニア求人ガイド_2025 / PdE job guide 2025
smarthr
0
180
コスト最適重視でAurora PostgreSQLのログ分析基盤を作ってみた #jawsug_tokyo
non97
1
730
Road to Go Gem #rubykaigi
sue445
0
980
React ABC Questions
hirotomoyamada
0
550
Featured
See All Featured
Scaling GitHub
holman
459
140k
Adopting Sorbet at Scale
ufuk
76
9.3k
Gamification - CAS2011
davidbonilla
81
5.2k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
The Language of Interfaces
destraynor
157
25k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
Become a Pro
speakerdeck
PRO
27
5.3k
Code Review Best Practice
trishagee
67
18k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Transcript
©Fusic Co., Ltd. 1 CONFIDENTIAL Amazon Bedrock Knowledge basesに Langfuse導入してみた
2025.3.10 苑田 朝彰 @sonoda_mj Bedrock Night オンライン
©Fusic Co., Ltd. 2 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近後輩が捌いたぶりを食べました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 3 CONTENTS 目次 1. 背景 2. Amazon
Bedrock Knowledge Bases(KB)にLangfuseを導入して みた 3. まとめ
©Fusic Co., Ltd. 4 背景 1
©Fusic Co., Ltd. 5 KBで監視を行うには、CloudWatch Logsやメトリクスを見にいく必要があり、少々めんどくさい。 KBの監視が少々めんどくさい CloudWatch Logs CloudWatch
メトリクス
©Fusic Co., Ltd. 6 KBで監視を行うには、CloudWatch Logsやメトリクスを見にいく必要があり、少々めんどくさい。 KBの監視が少々めんどくさい CloudWatch Logs CloudWatch
メトリクス Langfuseを使って、一括で管理したい!
©Fusic Co., Ltd. 7 KBにLangfuseを導入してみた 2
©Fusic Co., Ltd. 8 LLMアプリケーションのために設計されたオープンソースの観測・分析プラットフォーム。 トレースやメトリクスを取得し、可視化できる。 Langfuseとは 引用:https://langfuse.com/jp トレース メトリクス
©Fusic Co., Ltd. 9 @observeで対象の関数をデコレートする。 Langfuseを導入する方法 引用:https://langfuse.com/docs/sdk/python/decorators
©Fusic Co., Ltd. 10 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 11 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 12 retrieve_and_generate APIにLangfuseを導入する
©Fusic Co., Ltd. 13 retrieve_and_generate APIにLangfuseを導入する retrieve_and_generate API Langfuseの細かい調整
©Fusic Co., Ltd. 14 retrieve_and_generate APIにLangfuseを導入した結果
©Fusic Co., Ltd. 15 retrieve_and_generate APIにLangfuseを導入した結果 一連の処理 選択した処理の 入出力
©Fusic Co., Ltd. 16 retrieve_and_generate APIのOutputだけだと、Langfuseに表示できる項目が少ないため、メリットを受けにくい。 Langfuseのメリットを受けにくい 1. Token情報の不足 2.
RetrieveとGenerateの処理時間が一緒のため、どこに時間がかかってるかわからない
©Fusic Co., Ltd. 17 KBにLangfuseを導入する Amazon Bedrock Knowledge Bases (retrieve用)
Amazon Bedrock (generate用) User Amazon DynamoDB (会話履歴用) AWS Lambda AWS Cloud retrieve APIを使用する場合 Amazon Bedrock Knowledge Bases (retrieve and generate) User AWS Lambda AWS Cloud retrieve_and_generate APIを使用する場合
©Fusic Co., Ltd. 18 retrieve APIにLangfuseを導入する
©Fusic Co., Ltd. 19 retrieve APIにLangfuseを導入する Langfuseの細かい調整 KBからの検索 会話履歴の取得 プロンプトの生成
テキスト生成
©Fusic Co., Ltd. 20 retrieve APIにLangfuseを導入する Langfuseの細かい調整 KBからの検索 会話履歴の取得 プロンプトの生成
テキスト生成 @observe @observe @observe @observe
©Fusic Co., Ltd. 21 retrieve APIにLangfuseを導入した結果
©Fusic Co., Ltd. 22 retrieve APIにLangfuseを導入した結果 一連の処理 選択した処理の 入出力
©Fusic Co., Ltd. 23 retrieve APIにLangfuseを導入した結果 Converse APIを使用することで、KBでは取得 できなかったパラメータを表記
©Fusic Co., Ltd. 24 各処理時間がどの程度かかったのかが瞬時にわかる。 retrieve APIにLangfuseを導入した結果
©Fusic Co., Ltd. 25 各APIへのLangfuse導入難易度の比較 APIの種類 導入の容易さ 監視機能の充実度 retrieve_and_generate API
• 導入が簡単 • 実装が非常にシンプル • 取得できない情報がある • 処理の内訳に対する分析がで きない。 • 詳細な監視が困難 retrieve API • 実装がやや複雑 • 複数の処理をデコレートする必 要がある • 詳細な情報が取得可能 • 各処理にかかった時間を確認 可能
©Fusic Co., Ltd. 26 まとめ 3
©Fusic Co., Ltd. 27 まとめ KBでも簡単にLangfuseを導入することが出来た。 Point 01 retrieve_and_generate APIとretrieve
APIは一長一短あるので、各プロジェクトごとに調整する必要がある。 Point 02 KB画面から確認できるようになってほしい。 Point 03
©Fusic Co., Ltd. 28 Thank You We are Hiring! https://recruit.fusic.co.jp/
ご清聴ありがとうございました!