Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
開発室Graph
July 27, 2018
Technology
2
2.1k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.2k
技術を楽しもう/enjoy_engineering
studio_graph
1
560
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.7k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5.2k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
10k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
4.1k
Other Decks in Technology
See All in Technology
使って学ぼう MCP (と GitHub Codespaces)
tsubakimoto_s
1
170
生成AI素人でも玄人でもない私がセイセイAIチョットワカルために勉強したこと
wkm2
2
280
「データの価値を、みんなの武器に。」Data Enablementの価値とツラみ
ryoskdara_
1
120
AI駆動開発とRAGプロダクトへの挑戦の軌跡 - 弁護士ドットコムでの学びから -
bengo4com
0
320
衛星画像即時マッピングサービスの実現に向けて
lehupa
1
280
"共通化"と"Embed"のブレンドでスケール可能な運用を!M&Aを支えるGENDA SREの実践 / GENDA Tech Talk #3
genda
0
200
AWSが推進するAI駆動開発ライフサイクル入門 〜 AI駆動開発時代に必要な人材とは 〜/ introduction_to_aidlc_and_skills
fatsushi
5
3k
EKSで実践する オブザーバビリティの現在地
honmarkhunt
1
260
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
2
1k
EMから現場に戻って見えた2026年の開発者視点
sudoakiy
1
110
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
150
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
330
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
150
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Claude Code のすすめ
schroneko
67
210k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
130
Mobile First: as difficult as doing things right
swwweet
225
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
140
Fireside Chat
paigeccino
41
3.8k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
For a Future-Friendly Web
brad_frost
182
10k
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15