Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
開発室Graph
July 27, 2018
Technology
2
2.1k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
技術を楽しもう/enjoy_engineering
studio_graph
1
510
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.6k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5.1k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
9.9k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
3.9k
Other Decks in Technology
See All in Technology
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
Delta airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
deltahelp
0
820
Lazy application authentication with Tailscale
bluehatbrit
0
220
20250705 Headlamp: 專注可擴展性的 Kubernetes 用戶界面
pichuang
0
280
SEQUENCE object comparison - db tech showcase 2025 LT2
nori_shinoda
0
150
Lakebaseを使ったAIエージェントを実装してみる
kameitomohiro
0
140
CRE Camp #1 エンジニアリングを民主化するCREチームでありたい話
mntsq
1
140
Glacierだからってコストあきらめてない? / JAWS Meet Glacier Cost
taishin
1
170
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
170
改めてAWS WAFを振り返る~業務で使うためのポイント~
masakiokuda
2
270
AI時代の開発生産性を加速させるアーキテクチャ設計
plaidtech
PRO
3
160
Sansanのデータプロダクトマネジメントのアプローチ
sansantech
PRO
0
170
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
329
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
For a Future-Friendly Web
brad_frost
179
9.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Documentation Writing (for coders)
carmenintech
72
4.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Code Review Best Practice
trishagee
69
19k
A Modern Web Designer's Workflow
chriscoyier
695
190k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
RailsConf 2023
tenderlove
30
1.1k
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15