Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
開発室Graph
July 27, 2018
Technology
2
2k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
技術を楽しもう/enjoy_engineering
studio_graph
1
490
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.5k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
9.8k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
3.8k
Other Decks in Technology
See All in Technology
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
460
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
6
640
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
1
410
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
700
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
550
React ABC Questions
hirotomoyamada
0
120
AWS Control Towerを 数年運用してきての気づきとこれから/aws-controltower-ops-tips
tadayukinakamura
0
150
Writing Ruby Scripts with TypeProf
mame
0
110
更新系と状態
uhyo
6
1.4k
“パスワードレス認証への道" ユーザー認証の変遷とパスキーの関係
ritou
1
580
プロダクト開発におけるAI時代の開発生産性
shnjtk
2
240
SDカードフォレンジック
su3158
1
610
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Designing for Performance
lara
608
69k
RailsConf 2023
tenderlove
30
1.1k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Speed Design
sergeychernyshev
29
900
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
A Tale of Four Properties
chriscoyier
158
23k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Documentation Writing (for coders)
carmenintech
69
4.7k
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15