Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
開発室Graph
July 27, 2018
Technology
2
2k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
技術を楽しもう/enjoy_engineering
studio_graph
1
490
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.5k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
9.9k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
3.9k
Other Decks in Technology
See All in Technology
コードや知識を組み込む / Incorporating Codes and Knowledge
ks91
PRO
0
170
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
5.5k
[新卒向け研修資料] テスト文字列に「うんこ」と入れるな(2025年版)
infiniteloop_inc
4
14k
2025年8月から始まるAWS Lambda INITフェーズ課金/AWS Lambda INIT phase billing changes
quiver
1
940
AI 코딩 에이전트 더 똑똑하게 쓰기
nacyot
0
540
Google Cloud Next 2025 Recap 生成AIモデルとマーケティングでのコンテンツ生成 / Generative AI models and content creation in marketing
kyou3
0
110
AIによるコードレビューで開発体験を向上させよう!
moongift
PRO
0
420
MCPが変えるAIとの協働
knishioka
1
150
Previewでもここまで追える! Azure AI Foundryで始めるLLMトレース
tomodo_ysys
2
630
Azure × MCP 入門
ry0y4n
8
1.6k
kernelvm-brain-net
raspython3
0
510
Ninno LT
kawaguti
PRO
1
110
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
790
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Become a Pro
speakerdeck
PRO
28
5.3k
Designing Experiences People Love
moore
142
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
120
52k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
A Tale of Four Properties
chriscoyier
159
23k
Facilitating Awesome Meetings
lara
54
6.3k
Code Reviewing Like a Champion
maltzj
523
40k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15