Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth...
Search
TakaakiKakei
December 10, 2023
Technology
0
1.1k
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth 2023に登壇しました #AWSreInvent #cmregrowth
re:Invent2023の振り返りイベントCM re:Growth 2023で登壇した生成AIの話です
TakaakiKakei
December 10, 2023
Tweet
Share
More Decks by TakaakiKakei
See All by TakaakiKakei
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
370
企業が押さえるべきMCPの未来
takaakikakei
5
1.6k
5分で語るMCP
takaakikakei
0
31
生成AIの現在地点とこれからの可能性
takaakikakei
0
260
AIプロダクト開発から得られた知見 - 2025年1月版
takaakikakei
0
430
re:Invent 2024 生成AIまとめ
takaakikakei
0
620
OpenAIのAssistants API(Beta)の概要と使い方
takaakikakei
0
730
企業向け生成AIアプリの 開発から得られた知見
takaakikakei
0
710
LangChainを使ってChatGPTの機能を拡張してみた ~過去の会話やGoogle検索結果を活用して自然な応答を生成する方法~ #DevIO2023
takaakikakei
1
2.6k
Other Decks in Technology
See All in Technology
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
130
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
stupid jj tricks
indirect
0
7.9k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
77k
コンテキストエンジニアリングとは? 考え方と応用方法
findy_eventslides
4
890
DataOpsNight#8_Terragruntを用いたスケーラブルなSnowflakeインフラ管理
roki18d
1
340
BirdCLEF+2025 Noir 5位解法紹介
myso
0
190
pprof vs runtime/trace (FlightRecorder)
task4233
0
160
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
0
130
Flaky Testへの現実解をGoのプロポーザルから考える | Go Conference 2025
upamune
1
420
社内お問い合わせBotの仕組みと学び
nish01
0
160
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
140
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
What's in a price? How to price your products and services
michaelherold
246
12k
Balancing Empowerment & Direction
lara
4
680
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
How STYLIGHT went responsive
nonsquared
100
5.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Navigating Team Friction
lara
189
15k
Transcript
AWSによる独⾃データ活⽤の ⽣成AIソリューション 筧 剛彰(Takaaki Kakei) 2023/12/08 1
2 自己紹介 筧 剛彰 Takaaki Kakei • AWS事業本部 • 業務改善や生成AIアプリ開発
• re:Invent2023で初の現地参加
3 皆さん、生成AIを業務活用されていますか?
4 皆さん、独自データを活用した 生成AIを使っていますか?
5 このセッションについて re:Invent2023で発表された、 独自データ活用の生成AIソリューションを3つ紹介しま す Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
6 このセッションのゴール AWSによる独自データ活用の 生成AIソリューションついて 話せる人になりましょう!
7 目次 第0部:まずは「独自データを活用した生成AI」について知ろう 第1部:Amazon Q編 第2部:Amazon Bedrock - Knowledge base編
第3部:Amazon Bedrock - Agents編 セッションのまとめ
8 PART 0 まずは「独自データを活用した生成AI」について知ろう
9 生成AIが知らない情報は?
10 生成AIが知らない情報 最新の情報は知らない
11 生成AIが知らない情報 企業等の独自データは知らない
12 独自データを活用した 生成AIを実現するには?
13 独自データを活用した生成AIの実現方法 Fine-tuning RAG 大きく分けて2つある
14 独自データを活用した生成AIの実現方法 Fine-tuning RAG 既存モデルを独自のデータで 追加学習する手法
15 独自データを活用した生成AIの実現方法 Fine-tuning RAG 独自のデータソースから情報を検索し それを元に回答を生成する手法
16 RAGのイメージ図
17 今回紹介するAWSソリューション Amazon Q (For Business Use) Amazon Bedrock Knowledge
base Amazon Bedrock Agents
18 今回紹介するAWSソリューション この3つはRAGのソリューションです Amazon Q (For Business Use) Amazon Bedrock
Knowledge base Amazon Bedrock Agents
19 PART 1 Amazon Q編
20 第一部について 第一部では、Amazon Qの概要と RAG機能を紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
21 Amazon Qの概要 • 会話型AIアシスタント • プレビュー版 • AWSの様々なサービスで、ユ ーザーや開発者体験を向上
22 Amazon Q (For Business Use) • Amazon Qの機能の一つ •
RAGアプリケーションを簡単 に作れる • Kendraから情報取得して回答 を生成
23 Amazon Qを使ったRAG
24 Amazon Qの対応するデータソース 様々なデータソースに簡単に接続ができる
25 関連ブログ https://dev.classmethod.jp/articles/try_amazon_qbusiness_api/
26 PART 2 Amazon Bedrock - Knowledge base編
27 第二部について 第二部では、Amazon Bedrockの概要と Knowledge base機能を利用したRAGを紹介します Amazon Q (For Business
Use) Amazon Bedrock Knowledge base Amazon Bedrock Agents
28 Amazon Bedrockとは • Amazonや主要なAIスタートア ップ企業が提供する基盤モデ ルを簡単に利用できるサービ ス • Amazon
Titan, Anthropic Claude など
29 Amazon Bedrock - Knowledge base • Amazon Bedrockの機能の一つ •
特定ベクトルデータベースか ら情報取得して回答
30 Amazon Bedrock - Knowledge baseを使ったRAG
31 関連ブログ https://dev.classmethod.jp/articles/update-reinvent2023-bedrock-rag/
32 PART 3 Amazon Bedrock - Agents編
33 第三部について 第三部では、Amazon Bedrockの Agents機能を利用したRAGを紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
34 Amazon Bedrock - Agents • Amazon Bedrockの一機能 • 複数のKnowledge
baseと Lambda関数から情報取得し て回答 • Knowledge baseより複雑なタ スクの実行が可能
35 Amazon Bedrock - Agentsを使ったRAG
36 関連ブログ https://dev.classmethod.jp/articles/agents-for-amazon-bedrock-ga/
37 セッションのまとめ
38 セッションのまとめ 今回扱った 3 つのソリューションを 振り返ってみましょう
39 セッションまとめ AWSによる独自データ活用の 生成AIソリューションを3つ紹介しました Amazon Q (For Business Use) Amazon
Bedrock Knowledge base Amazon Bedrock Agents
40 どのソリューションが一番おすすめ?
現時点の私のおすすめ 6 Amazon Q •データソースの拡張性が⾼い •コスパがよさそう •管理が必要なリソースが少ない ※ただし、プレビュー版であることに注意
42 皆さん、AWSによる独自データ活用の 生成AIソリューションついて 理解が深まりましたか?
43 さいごに 次は実際に試して 業務に活用していきましょう!
44