Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth...
Search
TakaakiKakei
December 10, 2023
Technology
0
1.1k
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth 2023に登壇しました #AWSreInvent #cmregrowth
re:Invent2023の振り返りイベントCM re:Growth 2023で登壇した生成AIの話です
TakaakiKakei
December 10, 2023
Tweet
Share
More Decks by TakaakiKakei
See All by TakaakiKakei
企業が押さえるべきMCPの未来
takaakikakei
5
1.4k
5分で語るMCP
takaakikakei
0
26
生成AIの現在地点とこれからの可能性
takaakikakei
0
220
AIプロダクト開発から得られた知見 - 2025年1月版
takaakikakei
0
380
re:Invent 2024 生成AIまとめ
takaakikakei
0
520
OpenAIのAssistants API(Beta)の概要と使い方
takaakikakei
0
670
企業向け生成AIアプリの 開発から得られた知見
takaakikakei
0
680
LangChainを使ってChatGPTの機能を拡張してみた ~過去の会話やGoogle検索結果を活用して自然な応答を生成する方法~ #DevIO2023
takaakikakei
1
2.5k
Slack Boltコース!AWS Lambda & Pythonのビキナー仕立て #devio2022
takaakikakei
0
5.5k
Other Decks in Technology
See All in Technology
microCMSではじめるAIライティング
himaratsu
0
120
ABEMAの本番環境負荷試験への挑戦
mk2taiga
5
810
TLSから見るSREの未来
atpons
2
240
オフィスビルを監視しよう:フィジカル×デジタルにまたがるSLI/SLO設計と運用の難しさ / Monitoring Office Buildings: The Challenge of Physical-Digital SLI/SLO Design & Operation
bitkey
1
350
NewSQLや分散データベースを支えるRaftの仕組み - 仕組みを理解して知る得意不得意
hacomono
PRO
3
230
SREのためのeBPF活用ステップアップガイド
egmc
2
900
Delta airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
deltahelp
0
1.1k
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
2
220
公開初日に Gemini CLI を試した話や FFmpeg と組み合わせてみた話など / Gemini CLI 初学者勉強会(#AI道場)
you
PRO
0
1k
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
120
Delegating the chores of authenticating users to Keycloak
ahus1
0
180
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
2
7.8k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Typedesign – Prime Four
hannesfritz
42
2.7k
How to train your dragon (web standard)
notwaldorf
96
6.1k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
7
330
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
AWSによる独⾃データ活⽤の ⽣成AIソリューション 筧 剛彰(Takaaki Kakei) 2023/12/08 1
2 自己紹介 筧 剛彰 Takaaki Kakei • AWS事業本部 • 業務改善や生成AIアプリ開発
• re:Invent2023で初の現地参加
3 皆さん、生成AIを業務活用されていますか?
4 皆さん、独自データを活用した 生成AIを使っていますか?
5 このセッションについて re:Invent2023で発表された、 独自データ活用の生成AIソリューションを3つ紹介しま す Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
6 このセッションのゴール AWSによる独自データ活用の 生成AIソリューションついて 話せる人になりましょう!
7 目次 第0部:まずは「独自データを活用した生成AI」について知ろう 第1部:Amazon Q編 第2部:Amazon Bedrock - Knowledge base編
第3部:Amazon Bedrock - Agents編 セッションのまとめ
8 PART 0 まずは「独自データを活用した生成AI」について知ろう
9 生成AIが知らない情報は?
10 生成AIが知らない情報 最新の情報は知らない
11 生成AIが知らない情報 企業等の独自データは知らない
12 独自データを活用した 生成AIを実現するには?
13 独自データを活用した生成AIの実現方法 Fine-tuning RAG 大きく分けて2つある
14 独自データを活用した生成AIの実現方法 Fine-tuning RAG 既存モデルを独自のデータで 追加学習する手法
15 独自データを活用した生成AIの実現方法 Fine-tuning RAG 独自のデータソースから情報を検索し それを元に回答を生成する手法
16 RAGのイメージ図
17 今回紹介するAWSソリューション Amazon Q (For Business Use) Amazon Bedrock Knowledge
base Amazon Bedrock Agents
18 今回紹介するAWSソリューション この3つはRAGのソリューションです Amazon Q (For Business Use) Amazon Bedrock
Knowledge base Amazon Bedrock Agents
19 PART 1 Amazon Q編
20 第一部について 第一部では、Amazon Qの概要と RAG機能を紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
21 Amazon Qの概要 • 会話型AIアシスタント • プレビュー版 • AWSの様々なサービスで、ユ ーザーや開発者体験を向上
22 Amazon Q (For Business Use) • Amazon Qの機能の一つ •
RAGアプリケーションを簡単 に作れる • Kendraから情報取得して回答 を生成
23 Amazon Qを使ったRAG
24 Amazon Qの対応するデータソース 様々なデータソースに簡単に接続ができる
25 関連ブログ https://dev.classmethod.jp/articles/try_amazon_qbusiness_api/
26 PART 2 Amazon Bedrock - Knowledge base編
27 第二部について 第二部では、Amazon Bedrockの概要と Knowledge base機能を利用したRAGを紹介します Amazon Q (For Business
Use) Amazon Bedrock Knowledge base Amazon Bedrock Agents
28 Amazon Bedrockとは • Amazonや主要なAIスタートア ップ企業が提供する基盤モデ ルを簡単に利用できるサービ ス • Amazon
Titan, Anthropic Claude など
29 Amazon Bedrock - Knowledge base • Amazon Bedrockの機能の一つ •
特定ベクトルデータベースか ら情報取得して回答
30 Amazon Bedrock - Knowledge baseを使ったRAG
31 関連ブログ https://dev.classmethod.jp/articles/update-reinvent2023-bedrock-rag/
32 PART 3 Amazon Bedrock - Agents編
33 第三部について 第三部では、Amazon Bedrockの Agents機能を利用したRAGを紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
34 Amazon Bedrock - Agents • Amazon Bedrockの一機能 • 複数のKnowledge
baseと Lambda関数から情報取得し て回答 • Knowledge baseより複雑なタ スクの実行が可能
35 Amazon Bedrock - Agentsを使ったRAG
36 関連ブログ https://dev.classmethod.jp/articles/agents-for-amazon-bedrock-ga/
37 セッションのまとめ
38 セッションのまとめ 今回扱った 3 つのソリューションを 振り返ってみましょう
39 セッションまとめ AWSによる独自データ活用の 生成AIソリューションを3つ紹介しました Amazon Q (For Business Use) Amazon
Bedrock Knowledge base Amazon Bedrock Agents
40 どのソリューションが一番おすすめ?
現時点の私のおすすめ 6 Amazon Q •データソースの拡張性が⾼い •コスパがよさそう •管理が必要なリソースが少ない ※ただし、プレビュー版であることに注意
42 皆さん、AWSによる独自データ活用の 生成AIソリューションついて 理解が深まりましたか?
43 さいごに 次は実際に試して 業務に活用していきましょう!
44